PROBLEM SET 6 DUE FEBRUARY 24, 2011 – NOTE UNUSUAL DATE

1. Let L be a trivial complex line bundle on X, some real manifold. Let ∇ be a connection on L. If we choose an isomorphism between L and the product line bundle $\mathbb{C} \times X$, then sections of L can be identified with functions $X \to \mathbb{C}$. We'll write $\alpha(s)$ for the function corresponding to s, we will also write α for the identification of sections of $L \otimes \Omega^1$ with 1-forms.

We showed in class that there is a one form ω such that

$$\alpha(\nabla(s)) = d\alpha(s) + \alpha(s)\omega.$$

- (1) In terms of ω , what is the map $\nabla^2: C^{\infty} \otimes L \to \Omega^2 \otimes L$? When is ∇ integrable?
- (2) Suppose we choose a different trivialization β of L, such that $\beta(s) = g\alpha(s)$, where g is some function $X \to \mathbb{C}^{\times}$. In the new coordinates, let $\beta(\nabla(s)) = d\beta(s) + \beta(s)\eta$. What is the relation between ω , η and g?
- **2.** Let M be a connected smooth manifold and V a smooth \mathbb{R} vector bundle over M. Suppose that, for each fiber V_x , we have an inner product \langle , \rangle on V_x . Let ∇ be a connection on V. Suppose that, for any two sections σ , τ of V, and any vector field X, we have the equality Γ

$$X\langle \sigma, \tau \rangle = \langle \nabla_X \sigma, \tau \rangle + \langle \sigma, \nabla_X \tau \rangle.$$

Let σ be a section of V which is ∇ -constant, meaning that $\nabla(\sigma) = 0$. Show that $\langle \sigma, \sigma \rangle$ is constant.

3. Let M be a connected smooth manifold and V a smooth \mathbb{R} vector bundle over M. Suppose that, for each fiber V_x , we have a linear endomorphism $E: V_x \to V_x$. Let ∇ be a connection on V. Suppose that, for any section σ of V, and any vector field X, we have the equality²

$$\nabla_X(E\sigma) = E\nabla_X(\sigma).$$

Let σ be a section of V which is ∇ -constant, meaning that $\nabla(\sigma) = 0$. Show that $E\sigma$ is also ∇ -constant.

- **4.** This is a continuation of problems 3 and 4 from the previous problem set. Recall that p is a polynomial of degree 2g+1 without repeated roots, and W is the hypersurface $y^2=p(x)$ in \mathbb{C}^2 . In that problem, we found a holomorphic (1,0)-form ω on W, given by $\omega=dx/(2y)=dy/p'(x)$. The holomorphic (1,0)-forms on W are of the form $f\omega$ for some holomorphic f.
 - (1) Let q(x) be a holomorphic function on \mathbb{C} . Express dq as multiple of ω .
 - (2) For any entire function u(x), show that $u(x)y\omega$ is of the form dg for some g(x).
 - (3) Let h(x) be a holomorphic function on \mathbb{C} . Express d(hy) as a multiple of ω .
 - (4) Let B be the vector space of polynomials v(x) such that there is a polynomial h(x) with $d(h(x)y) = v(x)\omega$. Show that $\mathbb{C}[x]/B \cong \mathbb{C}^{2g}$.
 - (5) **Fairly hard bonus question:** Same as the above question, with v and h entire. When I attempted this, it took some fairly messy analysis; I'm curious whether you can find a clean argument.

¹Most mathematicians would write $d\langle \sigma, \tau \rangle = \langle \nabla \sigma, \tau \rangle + \langle \sigma, \nabla \tau \rangle$. Exercise for those who want to work it out: Explain and justify the abuses of notation in this equation.

²As in the last footnote, the normal way to write this would be $\nabla(E\sigma) = E\nabla(\sigma)$. Again, what abuses of notation is this concealing?