PROBLEM SET 8 DUE MARCH 22, 2011

WORKING WITH HERMITIAN FORMS IN COORDINATES

1. On \mathbb{C}^2 , let the coordinates be $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Consider the Hermitian form $pdz_1 \otimes d\overline{z_1} + (q+ir)dz_1 \otimes d\overline{z_2} + (q-ir)dz_2 \otimes d\overline{z_1} + sdz_2 \otimes d\overline{z_2}$ for real numbers p, q, r and s.

Expand this form as $g - i\omega$, and express g and ω in the x_1, x_2, y_1, y_2 coordinates. Check directly that g is symmetric and ω is antisymmetric.

Some practice using "nice" coordinates

- **2.** Let $g-i\omega$ be a Kähler form and let * be the Hodge star with respect to g. Show that $d^*\omega=0$.
- **3.** Let X be a compact Kähler manifold. Let $L: \Omega^k \to \Omega^{k+2}$ be the map $\eta \to \omega \wedge \eta$. Let $\Lambda = *^{-1}L*$. Show that, for $\eta \in \Omega^k$, we have $\Lambda(L\eta) L(\Lambda\eta) = (n-k)\eta$.

An algebraic consequence of Hodge's theorem

- **4.** Let X be a compact Kähler manifold. Let \mathcal{H}^p and \mathcal{Z}^{p+1} be the sheaves of holomorphic p-forms and ∂ -closed holomorphic (p+1)-forms respectively.
 - (1) For every q, show that the map $H^q(X, \mathcal{H}^p) \xrightarrow{\partial} H^q(X, \mathcal{Z}^{p+1})$ is zero. (Hint: This is really simple using harmonic representatives.)
 - (2) For X a compact complex manifold, even without the Kähler condition, show that $H^0(X, \mathcal{H}^0) \to H^0(X, \mathcal{H}^1)$ is zero.
- **5.** The point of this exercise is to explore the consequences of problem 4. Just using the fact that $H^q(X, \mathcal{H}^p) \xrightarrow{\partial} H^q(X, \mathcal{Z}^{p+1})$ is zero, show the following:
 - (1) There is a short exact sequence $0 \to H^0(X, \mathcal{H}^1) \to H^1(X, \mathbb{C}) \to H^1(X, \mathcal{H}^0) \to 0$.
 - (2) There is a filtration $0 \subseteq F_1 \subseteq F_2 \subseteq H^2(X,\mathbb{C})$ such that $F_1 \cong H^0(X,\mathcal{H}^2)$, $F_2/F_1 \cong H^1(X,\mathcal{H}^1)$ and $H^2(X,\mathbb{C})/F_2 \cong H^2(X,\mathcal{H}^0)$.

The formal consequences of the Kähler identities

6. The point of this exercise is to study a formal algebraic model; this will correspond to the action of the various differential operators on the λ -eigenspaces of Δ for $\lambda > 0$.

Let $\lambda > 0$. Let $V^{p,q}$, for $0 \le p, q \le n$ be $(n+1)^2$ finite dimensional vector spaces with maps ∂ , $\overline{\partial}$, ∂^* and $\overline{\partial}^*$ between them shifting degrees in the obvious manners. Suppose that

- (1) ∂^2 , $\overline{\partial}^2$, $(\partial^*)^2$ and $(\overline{\partial}^*)^2$ are all 0.
- (2) $\partial \overline{\partial} + \overline{\partial} \partial$, $\partial \overline{\partial}^* + \overline{\partial}^* \partial$, $\partial^* \overline{\partial}^* + \overline{\partial}^* \partial^*$ and $\partial^* \overline{\partial} + \overline{\partial} \partial^*$ are all 0.
- (3) $\partial \partial^* + \partial^* \partial = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial} = \lambda \mathrm{Id}.$

Let $Z^{p,q}$ be the subspace of $V^{p,q}$ where ∂^* and $\overline{\partial}^*$ are 0.

- (1) Show that $Z^{p,q}$ is isomorphic to $\partial Z^{p,q}$ and to $\overline{\partial} Z^{p,q}$.
- (2) Show that $Z^{p,q}$ is isomorphic to $\partial \overline{\partial} Z^{p,q}$. Note: This requires nontrivial diagram tracing.
- (3) Show that $V^{p,q} \cong Z^{p,q} \oplus \partial Z^{p-1,q} \oplus \overline{\partial} Z^{p,q-1} \oplus \partial \overline{\partial} Z^{p-1,q-1}$.