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KEVIN CARDE

Where to read about what we’ve been doing:

• Picard group: early parts of Voisin Chapter 7. (But Voisin doesn’t prove Kodaira or
Lefschetz Vanishing.)
• Kodaira and Lefschetz Vanishing: Griffiths and Harris. See handout for their writeup on

the Lefschetz hyperplane theorem.
• Kodaira Embedding: Chapter 7 of Voisin or Griffiths and Harris.
• Hypercohomology and Algebraic de Rham: Voisin Chapter 8

Hypercohomology

We want to get rid of smooth functions and stick to holomorphic ones, and use coherent vector
bundles as our sheaves of choice. Our tool for this is hypercohomology.

Hypercohomology generalizes / relates to two notions of cohomology:

• The cohomology of a sheaf Hj(X,F), where F is a sheaf of abelian groups on X.
• If we have a complex of sheaves

0
d→ F0 d→ F1 d→ F2 d→ ...

(where d2 = 0, but there is no exactness condition), then we can define

SHk(F•) :=
Ker(Fk → Fk+1)

Im(Fk−1 → Fk)
.

Then SHk(F•) = 0 if and only if F• is exact.

Definition. Given two complexes

0 // E0

��

// E1

��

// E2

��

// ...

0 // F0 // F1 // F2 // ...

of sheaves, a quasi-isomorphism E• → F• is a collection of maps Ek → Fk, which commute with
d and induce isomorphisms SHk(E•)→ SHk(F•).

Example: what does a quasi isomorphism between 0 → F → 0 → 0 → ... and 0 → I0 → I1 →
I2 → ... look like? The cohomology of the top sequence is F in the zeroth position and 0 elsewhere.
Thus we need the second sequence to be exact except at I0, where it must have kernel F . In other
words, the map of complexes is a q.i. if and only if

0→ F → I0 → I1 → I2 → ...

is a resolution.

Lemma. Every complex of abelian sheaves has a quasi-isomorphism to a complex of injective
sheaves.

Definition/Theorem. If E• q.i.→ I•, then
Hk(E•) = Hk(0→ I0(X)→ I1(X)→ I2(X)→ ...)

is the hypercohomology of E•.

Key facts:

• This is well defined and functorial: given E• → F•, we get maps Hk(E•)→ Hk(F•).

• If A• → B• is a quasi-isomorphism, then Hk(A•)
∼=→ Hk(B•).
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• If E• is a complex of acyclic sheaves (e.g. if Ek is injective), then

Hk(E•) = H•(0→ E0 → E1 → E2 → ...).

Hence we can compute hypercohomology with acyclic sheaves.
• If we have three complexes

0

��

0

��

0

��
0 // A0

��

// A1

��

// A2

��

// ...

0 // B0

��

// B1

��

// B2

��

// ...

0 // C0

��

// C1

��

// C2

��

// ...

0 0 0

with exact columns, we get the long exact sequence

0→ H0(A•)→ H0(B•)→ H0(C•)→ H1(A•)→ ....

Čech form of H

Let E• be a complex of sheaves of abelian groups. Let U• be a cover of X such that every Ep is
acyclic on every Ui0 ∩ Ui1 ∩ ... ∩ Uiq (for now assume such an open cover exists). Then we get a
double complex

...
...

...

⊕
i0,i1,i2

E0(Ui0 ∩ Ui1 ∩ Ui2)

OO

//
⊕

i0,i1,i2
E1(Ui0 ∩ Ui1 ∩ Ui2)

OO

//
⊕

i0,i1,i2
E2(Ui0 ∩ Ui1 ∩ Ui2)

OO

// · · ·

⊕
i0,i1
E0(Ui0 ∩ Ui1)

OO

//
⊕

i0,i1
E1(Ui0 ∩ Ui1)

OO

//
⊕

i0,i1
E2(Ui0 ∩ Ui1)

OO

// · · ·

⊕
i0
E0(Ui0)

OO

//
⊕

i0
E1(Ui0)

OO

//
⊕

i0
E2(Ui0)

OO

// · · ·

Whenever we have a double complex, we can collapse it to a single complex:

0→
⊕
E0(Ui0)→

⊕
E0(Ui0 ∩ Ui1)⊕⊕
E1(Ui0)

→

⊕
E0(Ui0 ∩ Ui1 ∩ Ui2)⊕⊕
E1(Ui0 ∩ Ui1)⊕⊕
E2(Ui0)

→ ....

There is a sign twist: In ever square of the original diagram, one of the 4 maps should get a −1
(conventions differ as to where). Then Hk(E•) is the cohomology of this “hyper-Čech” complex.

Example: Let W be our favorite hyperelliptic curve, W = W1 ∪W2, with

y21 = x2g+1
1 + · · ·+ x1

y22 = x2g+1
2 + · · ·+ x2

(with the coefficients reversed in the two equations).
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Let’s look at H•(W,O ∂→ H1):

O(W1 ∩W2)
−1 // H1(W1 ∩W2)

O(W1)⊕O(W2)

OO

// H1(W1)⊕H1(W2)

OO

Then we H1 consists of triples

{(f, ω1, ω2) ∈ O(W1 ∩W2)×H1(W2)×H1(W2) : ω1 − ω2 = df}
{(g1 − g2, dg1, dg2) : (g1, g2) ∈ O(W1)×O(W2)}

(which we can compute explicitly if we go back to old problem sets). Note that global 1-forms are
a subspace: if ω ∈ H0(H1), then (0, ω, ω) ∈ H1. Conversely, if we quotient by global 1-forms, we
get a map to H1(O) given by (f, ω1, ω2) 7→ f . Hence we have a sequence

H0(H1)→ H1(O → H1)→ H1(O).

Theorem. For any complex manifold X,

Hk
top(X,C) ∼= Hk(O ∂→ H1 ∂→ H2 ∂→ ...).

Proof.

0

��

// C

��

// 0

��

// 0

��

// ...

0 // O // H1 // H2 // ...

is a quasi-isomorphism. �

So hypercohomology has packaged all the work into convenient notation. The only work remain-
ing is to prove that the above is a quasi-isomorphism (true by Dolbeault’s Lemma), and since we
know hypercohomology is invariant under quasi-isomorphism, this must compute the topological
cohomology.

Let us call H•(O → H1 → H2 → ...) “analytic de Rham” (in contrast with “algebraic de Rham”
which we will discuss next time).

What happens to Dolbeault?

We have the double complex

... ... ...

Ω0,2(X)

∂

OO

∂ // Ω1,2(X)

∂

OO

∂ // Ω2,2(X)

∂

OO

∂ // ...

Ω0,1(X)

∂

OO

∂ // Ω1,1(X)

∂

OO

∂ // Ω2,1(X)

∂

OO

∂ // ...

Ω0,0(X)

∂

OO

∂ // Ω1,0(X)

∂

OO

∂ // Ω2,0(X)

∂

OO

∂ // ...

(the squares already anticommute, so the minus sign is already “built in”).
The corresponding single complex is just

Ω0 → Ω1 → Ω2 → ...,

the de Rham complex.
H•(O → H1 → H2 → ...) is computed from ordinary cohomology of the complex of smooth

bundles. By Hodge theory, if X is compact Kähler, then cohomology is represented by the harmonic
functions in this double complex.
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If we do not have access to the double complex, though, how can we discuss the Hodge decom-
position? Define

F pHk := Hk(0→ 0→ ...→ 0→ Hp → Hp+1 → Hp+2 → ...)

(where the Hp is in position p). In particular, F 0Hk is analytic de Rham cohomology H•(O →
H1 → H2 → ...). This is the definition we will generalize, but we will now discuss two other ways
to think about it (which will not generalize):

• 0→ Zp → Hp → Hp+1 → ... is a resolution of Zp := {closed (p, 0)-forms}. So F pHk(X) ∼=
Hk−p(X,Zp). The shift of indices comes up because the complex starts at position p, not
0.
• We have a Dolbeault complex for F pHk: erase the first p columns of the standard one. If
X is compact Kähler, then Hodge decomposition gives

F pHk(X) ∼=
⊕
p′≥p

p′+q′=k

Hp′,q′(X)

We always (even without the compact Kähler assumption) have

0

��

0

��

0

��

0

��
0 // ... // 0 // 0

��

// Hp+1

��

// Hp+2

��

// Hp+3

��

// ...

0 // ... // 0 // Hp

��

// Hp+1

��

// Hp+2

��

// Hp+3

��

// ...

0 // ... // 0 // Hp

��

// 0

��

// 0

��

// 0

��

// ...

0 0 0 0

.

To remember which is the first and which the third row, think about how to make the squares
commute.

This gives us the long exact sequence

...→ Hk−p−1(X,Hp)→ F p+1Hk(X)→ F pHk(X)→ Hk−p(X,Hp)→ F p+1Hk+1(X)→ ....

When X is compact Kähler, this breaks into short exact sequences

0→ F p+1Hk(X)→ F pHk(X)→ Hk−p(X,Hp)→ 0

(proved by representing everything as harmonic classes).
So, in the compact Kähler case, we have injections

F kHk ⊂ F k−1Hk ⊂ ... ⊂ F 2Hk ⊂ F 1Hk ⊂ F 0Hk = Hk
top(X,C),

the “Hodge filtration,” and
F pHk/F p+1Hk = Hk−p(X,Hp).

If complex conjugation makes sense, we can recover the direct sum decomposition by

Hp,q = F pHp+q ∩ F pHp+q.

Think of Hk(X,C) as Hk(X,R)⊗RC and take the conjugate. However, we do not have such things
in characteristic p, and even in characteristic zero, there is still a sense in which the filtration is
more natural than the direct sum decomposition.

Recall from a problem set:
Let H = {x+ iy : y > 0}. Let Eτ = C/〈1, τ〉 for τ ∈ H. We have a family

E

��
H
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whose fiber over τ is the genus 1 curve Eτ . Topologically, this is a trivial family. We can look at the
vector bundle V whose fiber over τ is H1(Eτ ,C). This is a trivial vector bundle - even canonically
trivial. It has natural trivialization e∗1, e

∗
2 where e∗1 ∈ H1(Eτ ,Z) is 1 on R/Z and 0 on Rτ/Zτ , and

e∗2 ∈ H1(Eτ ,Z) is 0 on R/Z and 1 on Rτ/Zτ . Hence we can define holomorphic sections in terms
of this natural trivialization. We computed

H1,0(Eτ ) = C · (e∗1 + τe∗2).

In our new language, F 1H1 is a holomorphic subbundle of H1. But H0,1(Eτ ) = e∗1 + τe∗2 is not a
holomorphic subbundle. So we see that the filtration is natural, not the direct sum.


