
MATH 632 NOTES: LINE BUNDLES AND DIVISORS

SCRIBE: JUSTIN CAMPBELL

Last time, we talked about holomorphic line bundles. We have a short exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

Let X be a compact Kähler manifold, and let X be a divisor, i.e. an integer linear combination of complex
submanifolds of codimension one. Recall that [D] ∈ H2n−2(X,Z) ∼= H2(X,Z). For any η ∈ Ωn,n−2(X), we
have η|D = 0, so

∫
D

is 0 on Hn,n−2(X). Thus [D] maps to 0 in H0,2(X) = Hn,n−2(X)∗ and [D] ∈ NS(X).
Here are some natural questions:

• What line bundles can we build from D?
• We know line bundles give us classes in H1,1(X) (or more generally H1(Z1) for non-Kähler mani-

folds), but do they give us closed (1,1)-forms?

Line bundles from divisors

Given any complex manifold X and a hypersurface D, we define O(−D) ⊂ O by

O(−D)(U) = {f ∈ O(U) | f |D = 0}.
Recall that by a version of the implicit function theorem, there is an open cover of X such that D is principal
on each chart of the cover. More precisely, at each point of D there exist local coordinates z1, · · · , zn such
that D = {zn = 0}. In that chart,

O(−D)(U) = zn · O(U) ∼= O(U),

so O(−D) is locally free.
On the other hand, we let O(D)(U) consist of meromorphic functions on U which have at most a simple

pole at D but are well-defined elsewhere. So locally

O(D)(U) = z−1n · O(U) ∼= O(U).

In general, for ai ∈ Z we define

O(
∑

aiDi) =
⊗
O(Di)

⊗ai ,

where for ai < 0 we mean O(Di)
⊗ai = O(−Di)

⊗−ai .
Warning: Let g be a function in O(U) which vanishes to order k along D. Then, as a section of O(−D),

g vanishes to order k − 1. In general, if g ∈ O(
∑
aiDi)(U) has a zero of order bi at Di, then as a section g

has a zero of order bi + ai.
In gluing data: choose some Ui such that D is cut out by zi. Then gj←i = zjz

−1
i for O(−D), or ziz

−1
j for

O(D), which defines a Čech cocycle for H1(X,O∗, U•).
In fact, H1(X,O∗)→ H2(X,Z) sends O(

∑
aiDi) 7→

∑
ai[Di], so our construction does what we want.

Note: there are Kähler manifolds with line bundles not of this form. A given line bundle L has the form
O(
∑
aiDi) if and only if L has a nonzero meromorphic section.

(1, 1) forms from connections

In general, given a complex manifold X and a holomorphic line bundle, can we get a specific closed
(1,1)-form? Yes, but first we need a positive definite Hermitian form on L.

Recall that because L is holomorphic, we have a connection D : L → L ⊗ Ω0,1. Also, there is a unique
Chern connection ∇ = D +D which preserves the norm on L. Then

∇2 = (D +D)(D +D) = D2 +DD +DD +D
2

= DD +DD,

Date: 7 April 2011.

1



2 SCRIBE: JUSTIN CAMPBELL

and (DD+DD)σ = Θσ for Θ a closed (1,1)-form. In the rest of these notes, we verify that 1
2πiΘ represents

the correct class H1(Z1), or H1,1(X) if X is Kähler.
Take an open cover Ui where L is trivial, and let σi be a nonzero holomorphic section on Ui. Put

hi =
√
〈σi, σi〉 = |σi|, so σi = hiei where ei is a smooth section of norm 1. Then

Dei = D(h−1i σi) = ∂h−1i σi + h−1i Dσi = ∂h−1i σi = (−h−2i ∂hi)(hiei) = −∂hi
hi

ei.

So we see that, in the ei trivialization, we have D = ∂ − ∂hi

hi
. So

∇ = D +D = d− ∂hi
hi

+
∂hi
hi

= d− ∂hi
hi

+
∂hi
hi

,

where ∂hi

hi
= ∂hi

hi
because hi is real-valued.

In general, if we have a line bundle with a connection ∇ which is d + α in local coordinates, then the
curvature is

∇2(f) = d (df + fα) + α ∧ (df + fα) = df ∧ α+ f ∧ dα+ αdf = (dα)f.

So the curvature is dα. See Problem Set 6, Problem 1. (I also thought I talked about this on March 15, but
it isn’t in the scribed notes.)

In our case, we get that the curvature of ∇ is

Θ = d

(
∂hi

hi
− ∂hi

hi

)
= (∂ + ∂)(∂ log hi − ∂ log hi)

= ∂∂ log h2i (∂ and ∂ anticommute)

= ∂∂ log〈σi, σi〉.
Remark: This formula must be independent of the choice of σi, since the curvature is determined by the

connection and the connection is determined by the holomorphic structure and by the metric. It is a good
exercise to see this directly. Any other holomorphic section τi would be of the form gσi, for g ∈ O∗(Ui). We
have

∂∂ log〈τi, τi〉 = ∂∂ log〈σi, σi〉+ ∂∂ log g + ∂∂ log g.

The latter two terms are zero because log g is holomorphic and log g is anti-holomorphic. This uniqueness
implies that the ∂∂ log〈σi, σi〉 agree on overlaps, hence glue to a global (1,1)-form.

We now resume our verification that Θ/(2πi) is the desired closed (1, 1)-form. Recall that our (1, 1) form

arises from the map O∗ → Z1 which sends f 7→ 1
2πi

∂f
f . Put gj←i = σjσ

−1
i , so that the cocycle we get in

H1(Z1) is Ui ∩ Uj 7→ ∂σj

σj
− ∂σi

σi
. We need to check that this corresponds to ∂∂ log〈σi, σi〉 as a (1,1)-form.

Now look at the short exact sequence of sheaves

0 −→ Z1 −→ {∂ − closed (1,0)-forms} ∂−→ {d− closed (1,1)-forms} −→ 0,

which induces a map on cohomology:

H0(d− closed (1,1)-forms) −→ H1(Z1).

We need to show that this boundary map takes ∂∂ log〈σi, σi〉 to the Čech cocyle Ui ∩ Uj 7→ ∂σj

σj
− ∂σi

σi
.

Recall how to compute the Čech boundary map: Lift ∂∂ log〈σi, σi〉 to Ui 7→ ∂ log〈σi, σi〉, which is a Čech
cochain for {∂ − closed (1,0)-forms}. Then take the difference on overlaps to get

Ui ∩ Uj 7→ ∂ log〈σi, σi〉 − ∂ log〈σj , σj〉 = ∂ log
∣∣ σi

σj

∣∣2 = ∂ log σi

σj
+ ∂ log σi

σj

= ∂ log σi

σj
= ∂σi

σi
− ∂σj

σj
. �

Here the equality at the line break is because ∂ of an anti-holomorphic function is 0.


