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Recap from last time: Given that K is a closed polydisc, U is an open polydisc, K ⊂ U and
ω a (p, q)-from on U with ∂ω = 0, then there is a smaller polydisc V , where K ⊂ V ⊂ U , and a
(p, q−1) form θ on V such that ∂θ = ω|V . This existance of local ∂-antiderivative shows that at the

level of sheaves, for any n-dimensional manifold, 0→ Hp ∂→ Ωp,0 ∂→ Ωp,1 ∂→ Ωp,2 ∂→ ...
∂→ Ωp,n → 0

is exact for all q > 1.

Because Ωp,q is a C∞ module, Hk(Ωp,q) = 0 for k > 0, by using above resolution one can get
the cohomology of sheaf of holomorphic p-form

Hp,q := Hq(X,Hp) =
Ker(∂ : Ωp,q → Ωp,q+1)

Im(∂ : Ωp,q−1 → Ωp,q)
= 0 ∀q > 0

This time we are trying to strengthen the above result by showing even if we don’t shrink the
open polydisc U , the differential equation still can be solved.

Theorem 0.1. Let U be an open polydisc (with possible radii ∞). Let ω be a ∂-closed (p, q)-form
on U . Then there exists a (p, q − 1) form θ on U such that ∂θ = ω.

Proof. As we did last time, the problem reduces to the case p = 0. The proof will go by induction
on q. Let’s do the induction step first and then do the base case when q = 1.

Let K1 ⊂ K2 ⊂ K3 . . . be a sequence of closed polydiscs whose union is U. We want to show
that given θi on a neighbourhood of Ki with ∂θi = ω|Ki , there is θi+1 on a neighbourhood of Ki+1

such that ∂θi = ω|Ki+1 and θi+1|Ki = θi.

Let α be any (0, q−1)-form on a neighbourhood of Ki+1 such that ∂α = ω. Consider ∂(θi−α)
on Ki.

∂(θi − α) = ∂θi − ∂α = ω − ω = 0

By induction, there is a (0, q − 2)-form ψ with ∂ψ = θi − α on a neighbourhood of Ki.

Take a hat function ρ which is 1 on Ki and 0 on U\Ki+1. Then ρΨ extends the function Ψ
globally. Set θi+1 = α+ ∂(ρΨ) Notice that it is defined on Ki+1. Then

∂θi+1 = ∂α = ω on Ki+1

and
θi+1 = α+ ∂(1 ·Ψ) = α+ (θi − α) = θi on Ki

This completes the induction step.

Before proving the base case, let’s prove a lemma:
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Lemma 0.2. Let Br ⊂ Bs ⊂ Bt be three open polydiscs with the same center, and r = (r1, r2, . . . , rn), s =
(s1, s2, . . . , sn), t = (t1, t2, . . . , tn). Let f be a smooth function on Bt and holomorphic on Bs. Let
ε > 0. Then there exists a smooth function g on Bt such that ∂f = ∂g on Bt and |g| < ε on Br

Proof. Write f as power series

f =
∑

a∈Zn
≥0

faz
a1
1 z

a2
2 . . . zann

Since f is holomorphic onBs, there is a bound on the coeffients of f . Say |fa| ≤Ms−a11 s−a22 . . . s−ann ,
where M is a positive constant. Choose some finite subset J ⊂ Zn

≥0 such that∑
a∈Zn

≥0\J

M(r1/s1)
a1(r2/s2)

a2 . . . (rn/sn)an < ε

Set g = f −
∑

a∈J faz
a1
1 z

a2
2 . . . zann . Note that g is defined on all of Bt, because polynomials

converge everywhere.Then ∂f = ∂g on Bt, because ∂ of a polynomial is zero.

|g| = |
∑

a∈Zn
≥0\J

faz
a1
1 z

a2
2 · · · z

an
n |

≤
∑

a∈Zn
≥0\J

|fa · za11 z
a2
2 · · · z

an
n |

≤
∑

a∈Zn
≥0\J

M(s1)
−a1(s2)

−a2 · · · (sn)−an · ra11 r
a2
2 . . . rann

< ε
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Now let’s go back to the q = 1 case. This argument is significantly cleaned up from
what I presented in class.

Let U = ∪i≥0Ki. Let ω be (0, 1)-form on U . So we can find θi near Ki and we have ∂θi = ω
near Ki. By multiplying by a hat function, we can assume all θi’s are defined on all of U . Let
ψi = θi+1 − θi near Ki. So ∂ψi = 0 near Ki. By the above lemma, there exists φi such that
∂φi = ∂ψi on U and |φi| < 2−i near Ki−1.

Define θ =
∑

j≥1 φj + θ0 on Ki. For j > i. Because φj < 2−j , this sum converges uniformally
and absolutely on each compact set Ki.

On Ki we have

∂θ =
∞∑
j=1

∂φj + ∂θ0

=

∞∑
j=1

∂ψj + ∂θ0

=
i−1∑
j=1

∂ψj + ∂θ0

=
i−1∑
j=1

(∂θj+1 − ∂θj) + ∂θ0

= ∂θi − ∂θ0 + ∂θ0 = ∂θi

In the second equality, because the sum is finite on Ki, we can change the ∂ and the summation.
This finishes the proof.

This shows Hq(U,O) vanishes for polydiscs. A similar argument shows that it vanishes for
products of discs and annuli. (We will also see another proof of this on February 3.)

The following is an example when U is not a polydisc, and we may get some non-vanishing
cohomology class Hq(U,O) for some q > 0, where O denotes the sheaf of holomorphic functions.

Let U = C2\{(0, 0)}, U1 = C× C∗, U2 = C∗ × C, and U1 ∩ U2 = C∗ × C∗. Then {U1, U2} is a
cover of U . Each of U1, U2 and U1 ∩ U2 is a product of discs and annuli, so:

Hq(U1,O) ∼= Hq(U2,O) ∼= Hq(U1 ∩ U2,O) = 0 ∀q > 0

Consider a complex 0 → O(U1) ⊕O(U2) → O(U1 ∩ U2) → 0. Compute the sheaf cohomology
of (O, U) by Čech cohomology. We know that

O(U1) =
∑

i≥0,j∈Z
aijx

iyj , O(U2) =
∑

i∈Z,j≥0
aijx

iyj , O(U1 ∩ U2) =
∑
i,j∈Z

aijx
iyj ,

where in each case it is required that the sums converge for all (x, y) ∈ (C∗)2.

Thus,
H0(O,C2\{(0, 0)}) ∼= C[[x, y]]
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H1(O,C2\{(0, 0)}) ∼= x−1y−1C[[x−1, y−1]]

We notice that in this case, H1(O,C2\{(0, 0)}) is non-vanishing. We also see that we have
proved Hartog’s Theorem: Any holomorphic function on U extends to (C)2.

Here are some clarifications and corrections from before.

1. In the computation of C̆ech cohomology, even if the cover is infinite, since the map from∏
E(Ui1 ∩Ui2 ∩ . . .∩Uik−1

) to
∏
E(Ui1 ∩Ui2 ∩ . . .∩Uik) only deals with finite sum each time,

C̆ech cohomology is well-defined even for infinite cover.

2. If we have any continuous map i : W → X, and E is a sheaf on W , for any open subset U of
X, define (i∗E)(U) := E(i−1(U)). We have a theorem:

Theorem 0.3. If i : W → X is a closed inclusion, then Hk(X, i∗E) ∼= Hk(W, E)

Before we had that this is true for any inclusion. In fact it is false for open inclusions. The
following is one counterexample.

Consider the inclusion i : R2\{(0, 0)} → R2, and the sheaf of locally constant functions LC. In
this case, we know that i∗LCR ∼= LCR and the sheaf cohomology is just the usual topological
cohomology. Thus,

H1(R2\{(0, 0)}, i∗LCR) ∼= H1(R2\{(0, 0)},LCR) ∼= R

H1(R2,LCR) ∼= 0

They are not equal.
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