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Recap from last time: Given that K is a closed polydisc, U is an open polydisc, K C U and
w a (p,q)-from on U with dw = 0, then there is a smaller polydisc V', where K C V' C U, and a
(p,q—1) form 6 on V such that 00 = w|y. This existance of local 0-antiderivative shows that at the

level of sheaves, for any n-dimensional manifold, 0 — HP Qo G et S gp2 % g
is exact for all ¢ > 1.

Because QP9 is a C°° module, H*(QP9) = 0 for k > 0, by using above resolution one can get
the cohomology of sheaf of holomorphic p-form

Ker(0: QP14 — Qpatl)

HP = HY(X, HP) = =
Im(0: Qpra—1 — Qp.a)

=0Vqg>0

This time we are trying to strengthen the above result by showing even if we don’t shrink the
open polydisc U, the differential equation still can be solved.

Theorem 0.1. Let U be an open polydisc (with possible radii 00). Let w be a 0-closed (p, q)-form
on U. Then there exists a (p,q — 1) form 6 on U such that 00 = w.

Proof. As we did last time, the problem reduces to the case p = 0. The proof will go by induction
on ¢q. Let’s do the induction step first and then do the base case when ¢ = 1.

Let K1 € K9 C K3... be a sequence of closed polydiscs whose union is U. We want to show
that given ﬁl on a neighbourhood of K; with 00; = w|k,, there is 6;11 on a neighbourhood of K;;
such that 00; = w|k,,, and 0;11|k, = 0;.

Let a be any (0, g — 1)-form on a neighbourhood of K, 1 such that da = w. Consider 9(6; — )
on Kl
00; —a)=00; —0a=w—w=0

By induction, there is a (0, q — 2)-form ¢ with 9 = #; — a on a neighbourhood of K.

Take a hat function P which is 1 on K; and 0 on U\K;11. Then p¥ extends the function ¥
globally. Set 6,11 = a+ 9(p¥) Notice that it is defined on K;1;. Then

59i+1 = 50[ = w on Ki+1

and _
9,~+1:a+8(1-111):a—i—(ei—a):&i on K;

This completes the induction step.

Before proving the base case, let’s prove a lemma:
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Lemma 0.2. Let B, C By C By be three open polydiscs with the same center, andr = (r1,r2,...,7y),8 =
(51,82,...,8n),t = (t1,t2,...,ts). Let f be a smooth function on By and holomorphic on Bs. Let
€ > 0. Then there exists a smooth function g on By such that Of = 0g on By and |g| < € on B,

Proof. Write f as power series

Since f is holomorphic on By, there is a bound on the coeffients of f. Say |f,| < Msy s, ... s, %",
where M is a positive constant. Choose some finite subset J C Z% such that

> M(ri/s1)" (r2/$2)™ . (rn/sn)™ < €

€zl \J

Set g = f — > 4y fazi'25% ... zan. Note that g is defined on all of By, because polynomials

converge everywhere.Then 0f = Og on By, because 0 of a polynomial is zero.

lg| = | Z fa2@1232 ... 20|

a€Z,\J
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Now let’s go back to the ¢ = 1 case. This argument is significantly cleaned up from
what I presented in class.

Let U = U;j>0K;. Let w be (0,1)-form on U. So we can find 6; near K; and we have 20; = w
near K;. By multiplying by a hat function, we can assume all 6;’s are defined on all of U. Let
;i = ;11 — 0; near K;. So 0¢; = 0 near K;. By the above lemma, there exists ¢; such that
O¢; = Ov; on U and |¢;| < 27 near K;_1.

Define 6 = 2]21 ¢j + 0y on K;. For j > i. Because ¢; < 277 this sum converges uniformally
and absolutely on each compact set Kj;.

On K; we have

90 =" 0¢; + 9,
j=1

=0y, + 0ty
j=1

i—1

= 251/1] + 96
=1
i—1

== (803+1 59_7) + 590
1

00; — 00y + 00y = 00;

In the second equality, because the sum is finite on K;, we can change the @ and the summation.
This finishes the proof. O

This shows H?(U, Q) vanishes for polydiscs. A similar argument shows that it vanishes for
products of discs and annuli. (We will also see another proof of this on February 3.)

The following is an example when U is not a polydisc, and we may get some non-vanishing
cohomology class H4(U, O) for some g > 0, where O denotes the sheaf of holomorphic functions.

Let U = C2\{(0,0)}, Uy = C x C*, Uy = C* x C, and U; N Uy = C* x C*. Then {U;,Us} is a
cover of U. Each of Uy, Us and Uy N U, is a product of discs and annuli, so:

Hq(Ul,O) = Hq(UQ,O) = Hq(U1 N UQ,O) =0Vqg>0

Consider a complex 0 — O(U;) & O(Uz) — O(U; NUz) — 0. Compute the sheaf cohomology
of (0,U) by Cech cohomology. We know that

oty Z a;jx’ i, O (Us) = Z a;jx’ 7, OoUNUy) = Z a;jx’ iyl

1>0,j€Z i€2,j>0 i,JEL

where in each case it is required that the sums converge for all (z,y) € (C*)2.

Thus,
H°(0,C*\{(0,0)}) = Cl[z,y]]



HY(0,C%\{(0,0)}) =2~y 'Clla™", 5]

We notice that in this case, H'(O,C?\{(0,0)}) is non-vanishing. We also see that we have
proved Hartog’s Theorem: Any holomorphic function on U extends to (C)2.

Here are some clarifications and corrections from before.

1. In the computation of Cech cohomology, even if the cover is infinite, since the map from
[TEW;, NnU,N...0U;,_,) to [1EWU;, NU;, N...NU;,) only deals with finite sum each time,
Cech cohomology is well-defined even for infinite cover.

2. If we have any continuous map i : W — X, and & is a sheaf on W, for any open subset U of
X, define (i.€)(U) := E(i~1(U)). We have a theorem:

Theorem 0.3. Ifi: W — X is a closed inclusion, then H*(X,i.£) = H*(W,E)

Before we had that this is true for any inclusion. In fact it is false for open inclusions. The
following is one counterexample.

Consider the inclusion 7 : R?\{(0,0)} — R?, and the sheaf of locally constant functions £C. In
this case, we know that i, LCr = LCr and the sheaf cohomology is just the usual topological
cohomology. Thus,

H'(R*\{(0,0)},i.LCr) = H' (R*\{(0,0)}, LCr) = R
HY(R? LCRr) =20

They are not equal.



