Notes for February 1

Scribe: Yi Su

February 4, 2011

Recap from last time: Given that K is a closed polydisc, U is an open polydisc, $K \subset U$ and ω a (p,q)-from on U with $\overline{\partial}\omega = 0$, then there is a smaller polydisc V, where $K \subset V \subset U$, and a (p,q-1) form θ on V such that $\overline{\partial}\theta = \omega|_V$. This existance of local $\overline{\partial}$ -antiderivative shows that at the level of sheaves, for any *n*-dimensional manifold, $0 \to \mathcal{H}^p \xrightarrow{\overline{\partial}} \Omega^{p,0} \xrightarrow{\overline{\partial}} \Omega^{p,1} \xrightarrow{\overline{\partial}} \Omega^{p,2} \xrightarrow{\overline{\partial}} \dots \xrightarrow{\overline{\partial}} \Omega^{p,n} \to 0$ is exact for all q > 1.

Because $\Omega^{p,q}$ is a C^{∞} module, $H^k(\Omega^{p,q}) = 0$ for k > 0, by using above resolution one can get the cohomology of sheaf of holomorphic *p*-form

$$H^{p,q} := H^q(X, \mathcal{H}^p) = \frac{Ker(\overline{\partial} : \Omega^{p,q} \to \Omega^{p,q+1})}{Im(\overline{\partial} : \Omega^{p,q-1} \to \Omega^{p,q})} = 0 \ \forall q > 0$$

This time we are trying to strengthen the above result by showing even if we don't shrink the open polydisc U, the differential equation still can be solved.

Theorem 0.1. Let U be an open polydisc (with possible radii ∞). Let ω be a ∂ -closed (p,q)-form on U. Then there exists a (p,q-1) form θ on U such that $\overline{\partial}\theta = \omega$.

Proof. As we did last time, the problem reduces to the case p = 0. The proof will go by induction on q. Let's do the induction step first and then do the base case when q = 1.

Let $K_1 \subset K_2 \subset K_3 \ldots$ be a sequence of closed polydiscs whose union is U. We want to show that given θ_i on a neighbourhood of K_i with $\overline{\partial}\theta_i = \omega|_{K_i}$, there is θ_{i+1} on a neighbourhood of K_{i+1} such that $\overline{\partial}\theta_i = \omega|_{K_{i+1}}$ and $\theta_{i+1}|_{K_i} = \theta_i$.

Let α be any (0, q-1)-form on a neighbourhood of K_{i+1} such that $\overline{\partial}\alpha = \omega$. Consider $\overline{\partial}(\theta_i - \alpha)$ on K_i .

$$\overline{\partial}(\theta_i - \alpha) = \overline{\partial}\theta_i - \overline{\partial}\alpha = \omega - \omega = 0$$

By induction, there is a (0, q-2)-form ψ with $\overline{\partial}\psi = \theta_i - \alpha$ on a neighbourhood of K_i .

Take a hat function ρ which is 1 on K_i and 0 on $U \setminus K_{i+1}$. Then $\rho \Psi$ extends the function Ψ globally. Set $\theta_{i+1} = \alpha + \overline{\partial}(\rho \Psi)$ Notice that it is defined on K_{i+1} . Then

$$\partial \theta_{i+1} = \partial \alpha = \omega$$
 on K_{i+1}

and

$$\theta_{i+1} = \alpha + \partial(1 \cdot \Psi) = \alpha + (\theta_i - \alpha) = \theta_i \text{ on } K_i$$

This completes the induction step.

Before proving the base case, let's prove a lemma:

Lemma 0.2. Let $B_r \subset B_s \subset B_t$ be three open polydiscs with the same center, and $r = (r_1, r_2, \ldots, r_n)$, $s = (s_1, s_2, \ldots, s_n)$, $t = (t_1, t_2, \ldots, t_n)$. Let f be a smooth function on B_t and holomorphic on B_s . Let $\epsilon > 0$. Then there exists a smooth function g on B_t such that $\overline{\partial} f = \overline{\partial} g$ on B_t and $|g| < \epsilon$ on B_r

Proof. Write f as power series

$$f = \sum_{a \in \mathbb{Z}_{\geq 0}^n} f_a z_1^{a_1} z_2^{a_2} \dots z_n^{a_n}$$

Since f is holomorphic on B_s , there is a bound on the coefficients of f. Say $|f_a| \leq M s_1^{-a_1} s_2^{-a_2} \dots s_n^{-a_n}$, where M is a positive constant. Choose some finite subset $J \subset \mathbb{Z}_{>0}^n$ such that

$$\sum_{a \in \mathbb{Z}_{\geq 0}^n \setminus J} M(r_1/s_1)^{a_1} (r_2/s_2)^{a_2} \dots (r_n/s_n)^{a_n} < \epsilon$$

Set $g = f - \sum_{a \in J} f_a z_1^{a_1} z_2^{a_2} \dots z_n^{a_n}$. Note that \underline{g} is defined on all of B_t , because polynomials converge everywhere. Then $\overline{\partial} f = \overline{\partial} g$ on B_t , because $\overline{\partial}$ of a polynomial is zero.

$$\begin{aligned} |g| &= |\sum_{a \in \mathbb{Z}_{\geq 0}^{n} \setminus J} f_{a} z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{n}^{a_{n}}| \\ &\leq \sum_{a \in \mathbb{Z}_{\geq 0}^{n} \setminus J} |f_{a} \cdot z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{n}^{a_{n}}| \\ &\leq \sum_{a \in \mathbb{Z}_{\geq 0}^{n} \setminus J} M(s_{1})^{-a_{1}} (s_{2})^{-a_{2}} \cdots (s_{n})^{-a_{n}} \cdot r_{1}^{a_{1}} r_{2}^{a_{2}} \dots r_{n}^{a_{n}} \\ &< \epsilon \end{aligned}$$

Now let's go back to the q = 1 case. This argument is significantly cleaned up from what I presented in class.

Let $U = \bigcup_{i \ge 0} K_i$. Let ω be (0, 1)-form on U. So we can find θ_i near K_i and we have $\overline{\partial}\theta_i = \omega$ near K_i . By multiplying by a hat function, we can assume all θ_i 's are defined on all of U. Let $\psi_i = \theta_{i+1} - \theta_i$ near K_i . So $\overline{\partial}\psi_i = 0$ near K_i . By the above lemma, there exists ϕ_i such that $\overline{\partial}\phi_i = \overline{\partial}\psi_i$ on U and $|\phi_i| < 2^{-i}$ near K_{i-1} .

Define $\theta = \sum_{j \ge 1} \phi_j + \theta_0$ on K_i . For j > i. Because $\phi_j < 2^{-j}$, this sum converges uniformally and absolutely on each compact set K_i .

On K_i we have

$$\overline{\partial}\theta = \sum_{j=1}^{\infty} \overline{\partial}\phi_j + \overline{\partial}\theta_0$$
$$= \sum_{j=1}^{\infty} \overline{\partial}\psi_j + \overline{\partial}\theta_0$$
$$= \sum_{j=1}^{i-1} \overline{\partial}\psi_j + \overline{\partial}\theta_0$$
$$= \sum_{j=1}^{i-1} (\overline{\partial}\theta_{j+1} - \overline{\partial}\theta_j) + \overline{\partial}\theta_0$$
$$= \overline{\partial}\theta_i - \overline{\partial}\theta_0 + \overline{\partial}\theta_0 = \overline{\partial}\theta_i$$

In the second equality, because the sum is finite on K_i , we can change the $\overline{\partial}$ and the summation. This finishes the proof.

This shows $H^q(U, \mathcal{O})$ vanishes for polydiscs. A similar argument shows that it vanishes for products of discs and annuli. (We will also see another proof of this on February 3.)

The following is an example when U is not a polydisc, and we may get some non-vanishing cohomology class $H^q(U, \mathcal{O})$ for some q > 0, where \mathcal{O} denotes the sheaf of holomorphic functions.

Let $U = \mathbb{C}^2 \setminus \{(0,0)\}, U_1 = \mathbb{C} \times \mathbb{C}^*, U_2 = \mathbb{C}^* \times \mathbb{C}$, and $U_1 \cap U_2 = \mathbb{C}^* \times \mathbb{C}^*$. Then $\{U_1, U_2\}$ is a cover of U. Each of U_1, U_2 and $U_1 \cap U_2$ is a product of discs and annuli, so:

$$H^q(U_1, \mathcal{O}) \cong H^q(U_2, \mathcal{O}) \cong H^q(U_1 \cap U_2, \mathcal{O}) = 0 \ \forall q > 0$$

Consider a complex $0 \to \mathcal{O}(U_1) \oplus \mathcal{O}(U_2) \to \mathcal{O}(U_1 \cap U_2) \to 0$. Compute the sheaf cohomology of (\mathcal{O}, U) by Čech cohomology. We know that

$$\mathcal{O}(U_1) = \sum_{i \ge 0, j \in \mathbb{Z}} a_{ij} x^i y^j, \ \mathcal{O}(U_2) = \sum_{i \in \mathbb{Z}, j \ge 0} a_{ij} x^i y^j, \ \mathcal{O}(U_1 \cap U_2) = \sum_{i, j \in \mathbb{Z}} a_{ij} x^i y^j,$$

where in each case it is required that the sums converge for all $(x, y) \in (\mathbb{C}^*)^2$.

Thus,

$$H^0(\mathcal{O}, \mathbb{C}^2 \setminus \{(0,0)\}) \cong \mathbb{C}[[x,y]]$$

$$H^{1}(\mathcal{O}, \mathbb{C}^{2} \setminus \{(0,0)\}) \cong x^{-1}y^{-1}\mathbb{C}[[x^{-1}, y^{-1}]]$$

We notice that in this case, $H^1(\mathcal{O}, \mathbb{C}^2 \setminus \{(0,0)\})$ is non-vanishing. We also see that we have proved Hartog's Theorem: Any holomorphic function on U extends to $(\mathbb{C})^2$.

Here are some clarifications and corrections from before.

- 1. In the computation of Čech cohomology, even if the cover is infinite, since the map from $\prod \mathcal{E}(U_{i_1} \cap U_{i_2} \cap \ldots \cap U_{i_{k-1}})$ to $\prod \mathcal{E}(U_{i_1} \cap U_{i_2} \cap \ldots \cap U_{i_k})$ only deals with finite sum each time, Čech cohomology is well-defined even for infinite cover.
- 2. If we have any continuous map $i: W \to X$, and \mathcal{E} is a sheaf on W, for any open subset U of X, define $(i_*\mathcal{E})(U) := \mathcal{E}(i^{-1}(U))$. We have a theorem:

Theorem 0.3. If $i: W \to X$ is a closed inclusion, then $H^k(X, i_*\mathcal{E}) \cong H^k(W, \mathcal{E})$

Before we had that this is true for any inclusion. In fact it is false for open inclusions. The following is one counterexample.

Consider the inclusion $i : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$, and the sheaf of locally constant functions \mathcal{LC} . In this case, we know that $i_*\mathcal{LC}_{\mathbb{R}} \cong \mathcal{LC}_{\mathbb{R}}$ and the sheaf cohomology is just the usual topological cohomology. Thus,

$$H^{1}(\mathbb{R}^{2} \setminus \{(0,0)\}, i_{*}\mathcal{LC}_{\mathbb{R}}) \cong H^{1}(\mathbb{R}^{2} \setminus \{(0,0)\}, \mathcal{LC}_{\mathbb{R}}) \cong \mathbb{R}$$
$$H^{1}(\mathbb{R}^{2}, \mathcal{LC}_{\mathbb{R}}) \cong 0$$

They are not equal.