
Notes for February 15

Scribe: Justin Campbell

Our goal for this class is to put together all of the results from the previous lectures. At this point, not
much is left.

Let X ⊂ Cn be an open n-dimensional polydisc and W ⊂ X a d-dimensional complex submanifold.

Theorem 0.1. In this situation, Hq(W,Hp) = 0 for all q > 0. Equivalently, if i : W → X is the (closed)
embedding, we have Hq(X, i∗Hp

W ) = 0.

Proof. First, we show that if K is a closed polybox in X, there is a neighborhood U of K on which
Hq(i∗Hp

W ) = 0. Now for every z ∈ K, there is a small enough neighborhood N of z so that either N∩W = ∅
or W is cut out by n− d coordinates locally on N . In either case, i∗Hp

W has a free ON -module resolution of
length ≤ n− d.

Choose ε > 0 small enough so that the box around z with side length 6ε is contained in N . Let B be the
box of size 2ε centered at z, and notice that if z′ ∈ B then the box of side 2ε around z′ is still contained in
N . Thus, on such a box, there is still a resolution of length ≤ n− d by O-modules.

Taking such a B for each z ∈ K, we get an open cover of K. Find a finite subcover and a uniform ε > 0
such that for any z′ ∈ K, there is such a resolution on an ε-box about z′. Refine K into a grid with side
lengths < ε.

Then every small box has a neighborhood with a resolution, so glue them all together, whence i∗Hq
W has

a resolution of length ≤ n−d on a neighborhood U of K. Recall that we can shrink U so that Hq(U,O) = 0
for q > 0. As explained before, this implies that Hq(U, i∗Hp

W ) = 0.
Here is another useful fact: consider

0 −→ E −→ Hp
X −→ i∗Hp

W → 0,

where we have named the kernel E . As before, E has a finite resolution on small boxes, and there is a
neighborhood of K on which H1(E) = 0. So there is a neighborhood of K on which Hp(X) → Hp(W ) is
actually surjective.

Now we want to show that

0 −→ Hp(W ) −→ Ωp,0(W ) −→ · · · −→ Ωp,d(W ) −→ 0

is exact, so let ω ∈ Ωp,w(W ) with ∂ω = 0. We know that there is a rising union of closed polydiscs ∪iKi = X
and θi on W ∩Ki such that ∂θi = ω. This is an argument we made on Feb 1 when W is itself a polydisc.

We proceed by induction on q: the case q = 1 is the hard part. For q > 1, we show that, given K ⊂ K ′

and θ ∈ Ωp,q−1(K ∩W ) with ∂θ = ω, we can extend to θ̃ ∈ Ωp,q−1(K ′ ∩W ). We know there is some θ′ on

K ′ with ∂̃θ′ = ω, so let β = θ − θ′|K∩W , whence ∂β = 0.
So inductively, there exists α with ∂α = β, where β and α are both defined on some open neighborhood

of K ∩ W . Take a hat function ρ such that ρ = 1 on K and ρ = 0 where α is not defined. Then put
θ̃ = θ′ − ∂(ρ · α), so that ∂θ̃ = ω and θ̃|K = θ.

As for q = 1, we have K1 ⊂ K2 ⊂ · · · and θr ∈ Ωp,0(Kr ∩W ), which we can extend to all of W using
hat functions. Then put ψr = θr − θr−1, whence ∂ψr = 0 on Kr−1. So we can find holomorphic σr on Kr−1
such that ψr = σr|W , and then by Runge’s theorem we can shrink Kr−1 and find a polynomial Pr such that
|σr − Pr| < 2−r on Kr−1. In this way we can build

θ = θ0 +
∑

(ψr − Pr),

a function on W with ∂ = ω. This finishes the proof.
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We already checked that

0 −→ LCC −→ H0 −→ H1 −→ · · · −→ Hd −→ 0

is an exact sequence of sheaves on W , so

Hp(W,LCC) ∼= Hp
top(W,LCC) ∼=

{∂ − closed holomorphic p− forms}
{∂ − exact holomorphic p− forms}

.

In particular, with notation as before, Hp
top(W,C) = 0 for all p > d, even though dimRW = 2d.
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