NOTES FOR FEBRUARY 17

BROOKE ULLERY

Three ways to think about vector bundles:

- (1) as fiber bundles
- (2) in terms of gluing data
- (3) as locally free sheaves

1. Vector Bundles as Fiber Bundles

First, we'll introduce some notation and vocabulary: Let $\pi : E \to X$ be a continuous map of topological spaces. Define

$$
E \times_X E = \{ (e_1, e_2) \in E \times E \mid \pi(e_1) = \pi(e_2) \}.
$$

A C-vector bundle is the data of X, E, $\pi : E \to X$, $m : C \times E \to E$, and $p : E \times_X E \to E$ such that there is an open cover U_i of X such that over U_i , the tuple

$$
(U_i, \pi^{-1}(U_i), \pi|_{\pi^{-1}(U_i)}, m|_{\mathbb{C}\times\pi^{-1}(U_i)}, p|_{\pi^{-1}(U_i)\times\pi^{-1}(U_i)})
$$

is isomorphic to

 $(U_i, U_i \times \mathbb{C}^r)$, obvious projection, scalar multiplication, addition).

We also have \mathbb{R} -vector bundles, defined analogously.

Example 1.1. $X \times \mathbb{R}$ is an \mathbb{R} -vector bundle.

Example 1.2. The Möbius Strip is an R-vector bundle–locally it is $S^1 \times \mathbb{R}$.

Example 1.3. If X is any smooth manifold, T_*X (the tangent bundle) and T^*X (the cotangent bundle) are vector bundles. So are $\bigwedge^k T^*, T^* \otimes T_*, \text{Sym}^2(T^* \oplus T_*),$ etc.

Note: \oplus , \otimes , \bigwedge^{\bullet} , Sym[•] can all be identified locally and glued together.

If X is a complex manifold, then $(T_*)_{\mathbb{R}} X$ comes with an action J (corresponding to multiplication by i) on each fiber. For $(T_*)\otimes \mathbb{C}$, J acts (functorially) and

$$
T_* \otimes \mathbb{C} \cong T_{1,0} \oplus T_{0,1},
$$

where $T_{1,0}$ is the i eigenspace, and $T_{0,1}$ is the $-i$ eigenspace for J. Sections of $T_{1,0}$ are $(1,0)$ vector fields, locally $\sum f_i \frac{\partial}{\partial z}$ $\frac{\partial}{\partial z_i}$, where the f_i 's are smooth, and sections of $T_{0,1}$ are $(0, 1)$ -vector fields. Similarly,

$$
T^*\otimes \mathbb{C}\cong T^{1,0}\oplus T^{0,1}.
$$

That is,

(differential 1-forms with $\mathbb{C}\text{-values}$) ≅ ((1,0) – forms) \oplus ((0,1) – forms).

Definition 1.4. A map of vector bundles is

$$
E \xrightarrow{\alpha} E'
$$

\n
$$
\downarrow \pi
$$

\n
$$
X \xrightarrow{\alpha} X
$$

such that the above diagram commutes and $\alpha(e_1 + e_2) = \alpha(e_1) + \alpha(e_2)$ (when defined), and $\alpha(\lambda e) = \lambda \alpha(e), \lambda$ a scalar.

2. Vector Bundles in Terms of Gluing Data

Starting with the map $\pi : E \to X$, let U_i be an open cover of X so that we have

$$
\phi_i : \pi^{-1}(U_i) \stackrel{\cong}{\longrightarrow} U_i \times \mathbb{C}^r.
$$

For U_i and U_j in our cover, we define the map $\psi_{j\leftarrow i}$ to be the composition

$$
\psi_{j \leftarrow i} : (U_i \cap U_j) \times \mathbb{C}^r \xrightarrow{\phi_i^{-1}} \pi^{-1}(U_i \cap U_j) \xrightarrow{\phi_j} (U_i \cap U_j) \times \mathbb{C}^r.
$$

Then $\psi_{j\leftarrow i}(u,v) = (u, g_{j\leftarrow i}v)$, where $g_{j\leftarrow i}$ is a continuous map from $U_i \cap U_j \to GL_r \mathbb{C}$. On the triple intersection $U_i \cap U_j \cap U_k$, we have

$$
g_{k \leftarrow j} \cdot g_{j \leftarrow i} = g_{k \leftarrow i},
$$

since

$$
\phi_k \circ \phi_j^{-1} \circ \phi_j \circ \phi_i^{-1} = \phi_k \circ \phi_i^{-1}
$$

.

Note that it follows that $g_{i \leftarrow i} = \text{Id}$ and $g_{i \leftarrow j} g_{j \leftarrow i} = \text{Id}$.

This brings us to the following theorem.

Theorem 2.1. Given a topological space X, an open cover U_i , and continuous maps $g_{j\leftarrow i}: U_i \cap$ $U_j \rightarrow GL_r \mathbb{C}$, such that

$$
g_{k \leftarrow j} \cdot g_{j \leftarrow i} = g_{k \leftarrow i},
$$

there is a unique (up to isomorphism) vector bundle $\pi : E \to X$ giving rise to them.

Proof (Sketch). Take $\bigsqcup (U_i \times \mathbb{C}^r)$. For $u \in U_i \cap U_j$, glue (u, v) in $U_i \times \mathbb{C}^r$ to $(u, g_{j \leftarrow i}(u)v)$ in $U_j \times \mathbb{C}^r$. Let E be the result of these gluings, etc.

A vector bundle is. . .

• smooth if we can arrange that the maps

$$
g_{j \leftarrow i} : U_i \cap U_j \to GL_r \mathbb{C}
$$

are smooth (this makes sense for X a smooth manifold).

- holomorphic if we can arrange that the $g_{j\leftarrow i}$ are holomorphic (this makes sense for a complex manifold).
- a local system if we can arrange that the $g_{j\leftarrow i}$ are locally constant.

The following is an example of where local systems come from.

Example 2.2. Let $p: Y \to X$ be a submersion (i.e. a smooth map). Locally, this looks like $M \times U \to U$ for some M. We want to define a vector bundle that is locally $H^q(M, \mathbb{Z}) \times U \to U$. On $M \times (U_i \cap U_j) \rightarrow U_i \cap U_j$, glue by

$$
g: U_i \cap U_j \to \text{Aut}(M)
$$

and

$$
g^*: U_i \cap U_j \to GL_r(\mathbb{Z}),
$$

where r is the dimension of $H^q(M, \mathbb{Z})$. g^{*} must be locally constant since the target is discrete! Let $R^q p_*$ be the vector bundle on X whose fibers are $H^q(p^{-1}(x), \mathbb{R})$, glued by g^* .

Now, in order to construct a map between vector bundles (over the same base X) equipped with gluing data, we need to discuss refinements of their covers.

Given gluing data U_i , $g_{j \leftarrow i}$, a **refinement** of the cover U_i is:

- An open cover $V_{i'}$, and
- for each i', an index i, such that $V_{i'} \subseteq U_i$.

Now, for $V_{i'}$ and $V_{j'}$, with corresponding indices i and j, so that $V_{i'} \cap V_{j'} \subset U_i \cap U_j$, let

$$
h_{j \leftarrow i} = g_{j \leftarrow i}|_{V_{i'} \cap V_{j'}}.
$$

This is again gluing data, and gives an isomorphic vector bundle.

Now, let X be a topological space, and let $(U_i, g_{j \leftarrow i})$ and $(V_i, h_{j \leftarrow i})$ be two sets of gluing data over X, where the rank of U_i is r and the rank of V_i is s. To give a map from the first to second vector bundle, find a common refinement W_i of U_i and V_i . Let our new maps be $g'_{j \leftarrow i}$ and $h'_{j \leftarrow i}$. On each W_i , give a map $a_i: W_i \to \text{Mat}_{s \times r}(\mathbb{C})$ such that $h'_{j \leftarrow i} \cdot a_i = a_j \cdot g'_{j \leftarrow i}$ on $W_i \cap W_j$.

The two pairs (W_i, a_i) and (W'_i, a'_i) give the same map of vector bundles if and only if there is a refinement W''_i where $a_i|_{W''_{i'}} = a'_{i'}|_{W''_{i''}}$.

A map of smooth vector bundles/holomorphic vector bundles/local systems means that the a_i are smooth/holomorphic/locally constant.

3. Vector Bundles as Locally Free Sheaves

Given a map $\pi : E \to X$, and $U \subset X$, let $\mathcal{E}(U) = \{ \sigma : U \to \pi^{-1}(U) \mid \pi \circ \sigma = \text{Id} \}.$ \mathcal{E} is a sheaf, with the restriction maps being the restriction of functions. This is a sheaf of complex vector spaces, with pointwise addition and scalar multiplication. If E is smooth/holomorphic/a local system, we can define the sheaf of smooth/holomorphic/locally constant sections.

Warning: Given a holomorphic vector bundle, we can talk about the sheaf of smooth sections.

Example 3.1. \mathcal{H}^p is the holomorphic sections of $T^{p,0} = \bigwedge^p T^{1,0}$ while $\Omega^{p,0}$ is the smooth sections of $T^{p,0}$. In general, $T^{p,q} = \bigwedge^p T^{1,0} \otimes \bigwedge^q T^{0,1}$ and $\Omega^{p,q}$ is smooth sections of $T^{p,q}$.

Note: Not all sheaves are sections of vector bundles. Consider the closed map $W \hookrightarrow X$. Then $i_*\mathcal{O}_W$ is not a vector bundle.

- In the topological vector bundle setting, $\mathcal E$ is a continuous C-valued functions module. Given a section $\sigma: U \to \pi^{-1}(U)$, with $f: U \to \mathbb{C}$, $f \cdot \sigma$ is also a section.
- Smooth vector bundles give C^{∞} -modules.
- Holomorphic vector bundles give $\mathcal{O}\text{-modules.}$
- Local systems give $LC_{\mathbb{C}}$ -modules,

A map of C^{∞} -modules $\mathcal{E} \to \mathcal{F}$ is equivalent to a map of smooth vector bundles $E \to F$.

Note: Consider $C^{\infty} \longrightarrow \Omega^1$. As $d(f \cdot \sigma) \neq fd(\sigma)$, this is not a map of vector bundles; it is what is called a connection.

Theorem 3.2 (Swan - Serre). The category of smooth vector bundles/holomorphic vector bundles/local systems on X is equivalent to the category of locally free C^{∞} -/O-/LC_C-modules.

What is locally free? It means that there is an open cover U_i such that, on U_i , $\mathcal{E} \cong C^{\infty}(U_i)^{\oplus r}$ / $\mathcal{O}(U_i)^{\oplus r} / \mathop{\rm LC}\nolimits(\overline{U_i})^{\oplus r}.$

Remark 3.3. In the C^{∞} world, if we know the $C^{\infty}(X)$ -module structure of $\mathcal{E}(X)$, this determines $\mathcal E$ as a sheaf of C^{∞} -modules.

Proof (Sketch). Given $x \in X$, and $\pi^{-1}(x) \cong \mathcal{E}(X) \otimes_{C^{\infty}(X)} \mathbb{C}$, where \mathbb{C} is a C^{∞} -module by "value" at x". In other words $\sigma \equiv \sigma'$ if $\sigma - \sigma' = \sum f_i T_i$, where the f_i are functions vanishing at x and the T_i are global sections.

Locally, if $\sigma(x) = \sigma'(x)$, then $\sigma(x) - \sigma'(x) = \sum z_i T_i$, where the z_i are local coordinates.

If you have a section $\sigma \in \mathcal{E}(U)$ and $f \in C^{\infty}(U)$, find an open cover V_i of U such that \bar{V}_i is compact in U, and a hat function J_i , which is 1 on V_i and 0 on $X \setminus U$. Then $T_i \sigma$ and $T_i f$ extend to sections in $\mathcal{E}(X)$ and $C^{\infty}(X)$. So on V_i , $f \cdot \sigma = (T_i f)(T_i \sigma)$. So we know what $f \sigma|_{V_i}$ is, so we know what $f\sigma$ is.