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BROOKE ULLERY

Three ways to think about vector bundles:

(1) as fiber bundles
(2) in terms of gluing data
(3) as locally free sheaves

1. Vector Bundles as Fiber Bundles

First, we’ll introduce some notation and vocabulary:
Let π : E → X be a continuous map of topological spaces. Define

E ×X E = {(e1, e2) ∈ E × E | π(e1) = π(e2)}.

A C-vector bundle is the data of X, E, π : E → X, m : C × E → E, and p : E ×X E → E
such that there is an open cover Ui of X such that over Ui, the tuple

(Ui, π
−1(Ui), π|π−1(Ui),m|C×π−1(Ui), p|π−1(Ui)×Xπ−1(Ui))

is isomorphic to

(Ui, Ui × Cr, obvious projection, scalar multiplication, addition).

We also have R-vector bundles, defined analogously.

Example 1.1. X × R is an R-vector bundle.

Example 1.2. The Möbius Strip is an R-vector bundle–locally it is S1 × R.

Example 1.3. If X is any smooth manifold, T∗X (the tangent bundle) and T ∗X (the cotangent

bundle) are vector bundles. So are
∧k T ∗, T ∗ ⊗ T∗, Sym2(T ∗ ⊕ T∗), etc.

Note: ⊕, ⊗,
∧•, Sym• can all be identified locally and glued together.

If X is a complex manifold, then (T∗)RX comes with an action J (corresponding to multiplication
by i) on each fiber. For (T∗)⊗ C, J acts (functorially) and

T∗ ⊗ C ∼= T1,0 ⊕ T0,1,

where T1,0 is the i eigenspace, and T0,1 is the −i eigenspace for J . Sections of T1,0 are (1, 0)-

vector fields, locally
∑
fi

∂
∂zi

, where the fi’s are smooth, and sections of T0,1 are (0, 1)-vector fields.
Similarly,

T ∗ ⊗ C ∼= T 1,0 ⊕ T 0,1.

That is,

(differential 1-forms with C-values) ∼= ((1, 0)− forms)⊕ ((0, 1)− forms) .

Definition 1.4. A map of vector bundles is

E

π

��

α // E′

π′

��
X

= // X

such that the above diagram commutes and α(e1 + e2) = α(e1) + α(e2) (when defined), and
α(λe) = λα(e), λ a scalar.
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2. Vector Bundles in Terms of Gluing Data

Starting with the map π : E → X, let Ui be an open cover of X so that we have

φi : π−1(Ui)
∼=−→ Ui × Cr.

For Ui and Uj in our cover, we define the map ψj←i to be the composition

ψj←i : (Ui ∩ Uj)× Cr
φ−1
i−→ π−1(Ui ∩ Uj)

φj−→ (Ui ∩ Uj)× Cr.
Then ψj←i(u, v) = (u, gj←iv), where gj←i is a continuous map from Ui∩Uj → GLrC. On the triple
intersection Ui ∩ Uj ∩ Uk, we have

gk←j · gj←i = gk←i,

since
φk ◦ φ−1j ◦ φj ◦ φ

−1
i = φk ◦ φ−1i .

Note that it follows that gi←i = Id and gi←jgj←i = Id.
This brings us to the following theorem.

Theorem 2.1. Given a topological space X, an open cover Ui, and continuous maps gj←i : Ui ∩
Uj → GLrC, such that

gk←j · gj←i = gk←i,

there is a unique (up to isomorphism) vector bundle π : E → X giving rise to them.

Proof (Sketch). Take
⊔

(Ui×Cr). For u ∈ Ui∩Uj , glue (u, v) in Ui×Cr to (u, gj←i(u)v) in Uj×Cr.
Let E be the result of these gluings, etc. �

A vector bundle is. . .

• smooth if we can arrange that the maps

gj←i : Ui ∩ Uj → GLrC
are smooth (this makes sense for X a smooth manifold).
• holomorphic if we can arrange that the gj←i are holomorphic (this makes sense for a complex

manifold).
• a local system if we can arrange that the gj←i are locally constant.

The following is an example of where local systems come from.

Example 2.2. Let p : Y → X be a submersion (i.e. a smooth map). Locally, this looks like
M × U → U for some M . We want to define a vector bundle that is locally Hq(M,Z) × U → U .
On M × (Ui ∩ Uj)→ Ui ∩ Uj , glue by

g : Ui ∩ Uj → Aut(M)

and
g∗ : Ui ∩ Uj → GLr(Z),

where r is the dimension of Hq(M,Z). g∗ must be locally constant since the target is discrete! Let
Rqp∗ be the vector bundle on X whose fibers are Hq(p−1(x),R), glued by g∗.

Now, in order to construct a map between vector bundles (over the same base X) equipped with
gluing data, we need to discuss refinements of their covers.

Given gluing data Ui, gj←i, a refinement of the cover Ui is:

• An open cover Vi′ , and
• for each i′, an index i, such that Vi′ ⊆ Ui.

Now, for Vi′ and Vj′ , with corresponding indices i and j, so that Vi′ ∩ Vj′ ⊂ Ui ∩ Uj , let

hj←i = gj←i|Vi′∩Vj′ .

This is again gluing data, and gives an isomorphic vector bundle.
Now, let X be a topological space, and let (Ui, gj←i) and (Vi, hj←i) be two sets of gluing data

over X, where the rank of Ui is r and the rank of Vi is s. To give a map from the first to second
vector bundle, find a common refinement Wi of Ui and Vi. Let our new maps be g′j←i and h′j←i.

On each Wi, give a map ai : Wi → Mats×r(C) such that h′j←i · ai = aj · g′j←i on Wi ∩Wj .
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The two pairs (Wi, ai) and (W ′i , a
′
i) give the same map of vector bundles if and only if there is a

refinement W ′′i where ai|W ′′
i′

= a′i′ |W ′′i′′ .
A map of smooth vector bundles/holomorphic vector bundles/local systems means that the ai

are smooth/holomorphic/locally constant.

3. Vector Bundles as Locally Free Sheaves

Given a map π : E → X, and U ⊂ X, let E(U) = {σ : U → π−1(U) | π ◦ σ = Id}. E is
a sheaf, with the restriction maps being the restriction of functions. This is a sheaf of complex
vector spaces, with pointwise addition and scalar multiplication. If E is smooth/holomorphic/a
local system, we can define the sheaf of smooth/holomorphic/locally constant sections.

Warning : Given a holomorphic vector bundle, we can talk about the sheaf of smooth sections.

Example 3.1. Hp is the holomorphic sections of T p,0 =
∧p T 1,0 while Ωp,0 is the smooth sections

of T p,0. In general, T p,q =
∧p T 1,0 ⊗

∧q T 0,1 and Ωp,q is smooth sections of T p,q.

Note: Not all sheaves are sections of vector bundles. Consider the closed map W ↪→ X. Then
i∗OW is not a vector bundle.

• In the topological vector bundle setting, E is a continuous C-valued functions module. Given
a section σ : U → π−1(U), with f : U → C, f · σ is also a section.
• Smooth vector bundles give C∞-modules.
• Holomorphic vector bundles give O-modules.
• Local systems give LCC-modules,

A map of C∞-modules E → F is equivalent to a map of smooth vector bundles E → F .

Note: Consider C∞
d−→ Ω1. As d(f · σ) 6= fd(σ), this is not a map of vector bundles; it is what

is called a connection.

Theorem 3.2 (Swan - Serre). The category of smooth vector bundles/holomorphic vector bun-
dles/local systems on X is equivalent to the category of locally free C∞-/O-/LCC-modules.

What is locally free? It means that there is an open cover Ui such that, on Ui, E ∼= C∞(Ui)
⊕r /

O(Ui)
⊕r / LCC(Ui)

⊕r.

Remark 3.3. In the C∞ world, if we know the C∞(X)-module structure of E(X), this determines
E as a sheaf of C∞-modules.

Proof (Sketch). Given x ∈ X, and π−1(x) ∼= E(X) ⊗C∞(X) C, where C is a C∞-module by “value
at x”. In other words σ ≡ σ′ if σ − σ′ =

∑
fiTi, where the fi are functions vanishing at x and the

Ti are global sections.
Locally, if σ(x) = σ′(x), then σ(x)− σ′(x) =

∑
ziTi, where the zi are local coordinates.

If you have a section σ ∈ E(U) and f ∈ C∞(U), find an open cover Vi of U such that V̄i is
compact in U , and a hat function Ji, which is 1 on Vi and 0 on X \ U . Then Tiσ and Tif extend
to sections in E(X) and C∞(X). So on Vi, f · σ = (Tif)(Tiσ). So we know what fσ|Vi is, so we
know what fσ is. �


