NOTES FOR FEBRUARY 17

BROOKE ULLERY

Three ways to think about vector bundles:

(1) as fiber bundles
(2) in terms of gluing data
(3) as locally free sheaves

1. VEcTOR BUNDLES AS FIBER BUNDLES

First, we’ll introduce some notation and vocabulary:
Let m: E — X be a continuous map of topological spaces. Define

Exx E={(e1,e2) € EX E|m(e1) =m(e2)}.

A C-vector bundle isthe dataof X, E,7: F - X, m:CxFE —> FE, andp: Exx F - F
such that there is an open cover U; of X such that over U;, the tuple

(Ui, 7 U)o ) M1 (02) Pla—1 (U x =1 (U3))

is isomorphic to

(Ui, U; x C", obvious projection, scalar multiplication, addition).

We also have R-vector bundles, defined analogously.
Example 1.1. X x R is an R-vector bundle.
Example 1.2. The Mébius Strip is an R-vector bundle-locally it is S x R.

Example 1.3. If X is any smooth manifold, T, X (the tangent bundle) and 7*X (the cotangent
bundle) are vector bundles. So are A* T*, T* @ T, Sym?(T* & T3,), etc.
Note: @, ®, \°, Sym® can all be identified locally and glued together.

If X is a complex manifold, then (7, )gX comes with an action J (corresponding to multiplication
by i) on each fiber. For (T}) ® C, J acts (functorially) and

T, @C=Tio® T,

where 17 is the i eigenspace, and Ty is the —i eigenspace for J. Sections of 17 are (1,0)-
vector fields, locally > fia%y where the f;’s are smooth, and sections of Ty ; are (0, 1)-vector fields.
Similarly,

That is,
(differential 1-forms with C-values) = ((1,0) — forms) & ((0,1) — forms) .

Definition 1.4. A map of vector bundles is
E—=F
ok
X—X

such that the above diagram commutes and a(e; + e2) = a(e1) + a(ez) (when defined), and
a(Ae) = Aa(e), A a scalar.
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2. VECTOR BUNDLES IN TERMS OF GLUING DATA
Starting with the map 7 : E — X, let U; be an open cover of X so that we have
gbi . 7T_1(UZ‘) i) UZ x C".

For U; and U; in our cover, we define the map 1;; to be the composition

biei s (UNU) x C 2 = UinUy) 2 (U; nU;) x T
Then vj;(u,v) = (u, gj«iv), where gj.; is a continuous map from U; NU; — GL,C. On the triple
intersection U; N U; N Uy, we have
Gk«j * Gj<i = Gk<is
since
¢rod; opiog; ! =¢drog; .
Note that it follows that g;;; = Id and g;¢ ;g = Id.
This brings us to the following theorem.

Theorem 2.1. Given a topological space X, an open cover U;, and continuous maps gj; : U; N
U; = GL,C, such that

Jk<j * Gji = Gk<i>
there is a unique (up to isomorphism) vector bundle w : E — X giving rise to them.

Proof (Sketch). Take | |(U; xC"). For u € U;NUj, glue (u,v) in U; x C" to (u, gj—i(u)v) in U; x C".
Let E be the result of these gluings, etc. O

A vector bundle is. ..
e smooth if we can arrange that the maps

Gjei: U; N Uj — GL,C

are smooth (this makes sense for X a smooth manifold).

e holomorphic if we can arrange that the g;.; are holomorphic (this makes sense for a complex
manifold).

e a local system if we can arrange that the g;.; are locally constant.

The following is an example of where local systems come from.

Example 2.2. Let p : Y — X be a submersion (i.e. a smooth map). Locally, this looks like
M x U — U for some M. We want to define a vector bundle that is locally HY(M,Z) x U — U.
On M x (U; N Uj) — U;NUj, glue by

g:UNU; — Aut(M)
and

g* :U; N Uj — GLT(Z),

where 7 is the dimension of H4(M,Z). g* must be locally constant since the target is discrete! Let
Rip, be the vector bundle on X whose fibers are H(p~!(z),R), glued by g*.

Now, in order to construct a map between vector bundles (over the same base X) equipped with
gluing data, we need to discuss refinements of their covers.
Given gluing data Uj;, g+, a refinement of the cover U is:

e An open cover Vj/, and
e for each 4/, an index ¢, such that Vy C U;.

Now, for V;» and Vj/, with corresponding indices ¢ and j, so that Vi NV C U; N Uj, let
hji = Gjilv,nv, -
This is again gluing data, and gives an isomorphic vector bundle.

Now, let X be a topological space, and let (U;, gj«i) and (Vj, hj—;) be two sets of gluing data
over X, where the rank of U; is r and the rank of V; is s. To give a map from the first to second
vector bundle, find a common refinement W; of U; and V;. Let our new maps be g}, ;, and h’;,_,.
On each W;, give a map a; : W; — Matsy,(C) such that 1/, - a; = a; -gg»(_z- on W; N Wj.

J1
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The two pairs (W;, a;) and (W/, a}) give the same map of vector bundles if and only if there is a
refinement W/ where ai|Wil’/ = ag,\WZg,.
A map of smooth vector bundles/holomorphic vector bundles/local systems means that the a;

are smooth /holomorphic/locally constant.

3. VECTOR BUNDLES AS LOCALLY FREE SHEAVES

Given amap7: E — X, and U C X, let EU) = {0 : U —» 7Y (U) | moo = 1d}. € is
a sheaf, with the restriction maps being the restriction of functions. This is a sheaf of complex
vector spaces, with pointwise addition and scalar multiplication. If E is smooth/holomorphic/a
local system, we can define the sheaf of smooth/holomorphic/locally constant sections.

Warning: Given a holomorphic vector bundle, we can talk about the sheaf of smooth sections.

Example 3.1. H? is the holomorphic sections of TP? = AP T19 while QP is the smooth sections
of TP, Tn general, TP4 = AP TH0 @ AYT%1 and QP4 is smooth sections of TP4.

Note: Not all sheaves are sections of vector bundles. Consider the closed map W < X. Then
1,Ow is not a vector bundle.

e In the topological vector bundle setting, £ is a continuous C-valued functions module. Given
a section o : U — 7~ }(U), with f : U — C, f - o is also a section.

e Smooth vector bundles give C°°-modules.

e Holomorphic vector bundles give O-modules.

e Local systems give LCc-modules,

A map of C*°-modules & — F is equivalent to a map of smooth vector bundles £ — F.

Note: Consider C® —%5 Q1. As d(f-o) # fd(o), this is not a map of vector bundles; it is what
is called a connection.

Theorem 3.2 (Swan - Serre). The category of smooth vector bundles/holomorphic vector bun-
dles/local systems on X is equivalent to the category of locally free C*°-/O-/LCc-modules.

What is locally free? Tt means that there is an open cover U; such that, on U;, £ = C*°(U;)®" /
O(U;)®" /| LCc(U:)®".

Remark 3.3. In the C* world, if we know the C*(X)-module structure of £(X), this determines
& as a sheaf of C*°-modules.

Proof (Sketch). Given z € X, and 7! (z) 2 £(X) ®ce(x) C, where C is a C*°-module by “value
at 7. In other words o0 = ¢’ if 0 — o’ =Y f;T;, where the f; are functions vanishing at z and the
T; are global sections.

Locally, if o(x) = o’(x), then o(x) — o’ (x) = >_ 2;T;, where the z; are local coordinates.

If you have a section o € £(U) and f € C*®°(U), find an open cover V; of U such that V; is
compact in U, and a hat function .J;, which is 1 on V; and 0 on X \ U. Then T;o and T;f extend
to sections in £(X) and C*(X). Soon V;, f -0 = (T;f)(Tio). So we know what foly, is, so we
know what fo is. O



