NOTES FOR FEBRUARY 22

XIN ZHOU

1. Defining Connections

Motivation for connections: We'd like to compare vectors in different fibers of a vector bundle. At first, we'll talk about how to do this infinitesimally, by taking derivatives of sections. Later, we'll talk about parallel transport, which addresses this goal more directly.

Definition. (Incomplete)

A connection is a map which at every point $x \in X$, given a smooth section σ of E, a vector bundle, and a tangent vector v at x, outputs a vector in the fiber E_x such that

- (1) $\nabla_{v_1+v_2}\sigma = \nabla_{v_1}\sigma + \nabla_{v_2}\sigma$
- (2) $\nabla_{cv}\sigma = c\nabla_v\sigma$.
- (3) $\nabla_v(\sigma + \tau)$
- (4) $\nabla_v f \sigma(x) = v(f)(x)\sigma(x) + f(x)\nabla_v \sigma$

Here f is a C^{∞} function, σ a C^{∞} -section, c is a scalar and v(f) is the derivative of f by v.

This definition is incomplete in that we have no condition on how things vary with x.

Definition. (Complete)

A connection ∇ takes as input a smooth section σ , a smooth vector field V and outputs a smooth section $\nabla_v \sigma$ such that

- (1) $\nabla_{V_1+V_2}\sigma = \nabla_{V_1}\sigma + \nabla_{V_2}\sigma$
- (2) $\nabla_{fV}\sigma = f\nabla_V\sigma$
- (3) $\nabla_V(\sigma + \tau) = \nabla_V \sigma + \nabla_V \tau$
- (4) $\nabla_V f \sigma = V(f) \sigma + f \nabla \sigma$

Fundamental example: $X \times R \to X$, the trivial bundle. Let $\nabla_V(f) = V(f)$. This is the archetypical connection on the trivial bundle, but not the only one we can define.

Proposition. $(\nabla_V \sigma)(x)$ only depends on V at x and σ in a neighborhood of x.

Proof. If $V_1(x) = V_2(x)$, then $V_1 = V_2 + \sum f_i U_i$ where the f_i are C^{∞} -functions with $f_i(x) = 0$ and the U_i are C^{∞} vector fields. This implies

$$\nabla_{V_1}(\sigma) = \nabla_{V_2}(\sigma) + \sum_{i \in U_i} \nabla_{f_i U_i}(\sigma) = \nabla_{V_2}(\sigma) + \sum_{i \in V_i} f_i \nabla_{U_i}(\sigma)$$

The second sum is 0 at x, so $\nabla_{V_1}(\sigma)(x) = \nabla_{V_2}(\sigma)(x)$

Similarly, if $\sigma_1 = \sigma_2$ near x, then $\sigma_1 = \sigma_2 + \sum f_i \tau_i$ for $f_i \equiv 0$ near x, τ_i smooth sections.

$$\nabla_V(\sigma_1) = \nabla_V(\sigma_2) + \sum \nabla_V(f_i\tau_i) = \nabla_V(\sigma_2) + \sum f_i \nabla_V(\tau_i) + \sum V(f_i)\tau_i = 0$$

We have some stronger statement in terms of σ :

Proposition. If γ is a curve through x, with $\dot{\gamma} = V(x)$, then $\nabla_V \sigma(x)$ only depend on $\sigma|_{\gamma}$ near x.

Similarly checked as previous statements.

So a connection gives a map of sheaves, $(C^{\infty}$ -vector fields) $\times (C^{\infty}E) \to (C^{\infty}E)$. It's a map of C^{∞} -modules in the first coordinate.

XIN ZHOU

2. PARALLEL TRANSPORT

Given $E \to X$ smooth vector bundle, connection ∇ , path $\gamma : [0,1] \to X$ with $\dot{\gamma} \neq 0$. Given a section section σ of $\gamma^* E$ (this is a vector bundle on [0,1]). We can talk about $\nabla_{\dot{\gamma}}\sigma$ by the earlier discussion. We say that σ is ∇ -constant if $\nabla_{\dot{\gamma}}\sigma = 0$.

Lemma. Given X, E, ∇ and γ as before and $V \in E_{\gamma(0)}$, there exists a unique ∇ -constant section of $\gamma^* E$ such that $\sigma(\gamma(0)) = v$.

The reason is that the required condition is a first order ODE.

With E, X, ∇, γ and v as above, $\sigma(\gamma(1))$ is called the parallel transport of v from $\gamma(0)$ to $\gamma(1)$, along γ with respect to ∇

Vocabulary: If γ is a contractible loop, parallel transport along γ can be a nontrivial endomorphism of $E_{\gamma(0)}$. It's called "holonomy around γ ". If a connection has trivial holonomy for all contractible γ , then ∇ is called integrable or flat. If the connection is integrable, we get a map $\pi_1(X, x) \to GL(E_x)$. This map is called monodromy.

There is one more useful definition we often want: A connection is a map of sheaves

$$\nabla: C^{\infty}E \to \Omega^1 \otimes C^{\infty}E$$

such that:

$$\nabla(\sigma + \tau) = \nabla(\sigma) + \nabla(\tau)$$
$$\nabla(f\sigma) = df \otimes \sigma + f\nabla(\sigma)$$

The relationship between this definition and definition 2 is

$$\nabla_V(\sigma) = \langle V, \nabla(\sigma) \rangle$$

3. Connections in Coordinates

Let $X = U \subset \mathbb{R}^n$ and $E \cong U \times \mathbb{R}^m$ with the obvious vector bundle sturcutre. Then ∇ is determined by $\nabla_{\partial/\partial x_i}(e_j)$, everything else by linearity and Leibnitz and there's no restriction on what these should be.

Let $\nabla_{\partial/\partial x_i} e_a = \sum c_{ia}^b e_b$, where c_{ia}^b are nr^2 smooth functions. In other words, $\nabla e_a = \sum \sum c_{ia}^b e_b dx_i$. Then the Liebnitz and linearity conditions force

$$\nabla\left(\sum_{a} f_{a} e_{a}\right) = \sum_{i} df_{a} \otimes e_{a} + \sum_{a} f_{a} \left(\sum_{i} \sum_{b} c_{ia}^{b} dx_{i} \otimes e_{b}\right).$$

The above equality can also be written as:

$$abla \sigma = ``d\sigma" + \left(\sum c^b_{ia} dx_i\right) \otimes \sigma$$

where $d\sigma$ is abusive notation which only makes sense in a given trivialization. Here $\left(\sum c_{ia}^{b} dx_{i}\right)$ is a $r \times r$ matrix whose entries are 1-forms. Given ∇ , ∇' , connections on E, $\nabla(\sigma) - \nabla'(\sigma)$ is of the form (matrix) $\otimes \Omega^{1}$. Dropping out of coordinates, $\nabla - \nabla'$ is a well-defined element in End $(E) \otimes \Omega^{1}$.

Suppose we have E, X and $\nabla : C^{\infty}E \to C^{\infty}E \otimes \Omega^1$. By linearity, we get a map $\nabla : C^{\infty}E \otimes \Omega^k E \to C^{\infty}E \otimes \Omega^{k+1}$.

$$\nabla : \sum \sigma_i \otimes d\omega_i = \sum \sigma_i \otimes \omega_i + \sum [\nabla \sigma_i \otimes \omega_i]$$

On the right hand side, the first term is already in $C^{\infty}E \otimes \Omega^{k+1}$, the bracket on the second term means the contraction map $\Omega^1 \otimes \Omega^k \to \Omega^{k+1}$.

We have to check that this is well defined. Specifically, we have $\sigma \otimes (f \cdot \omega) = (f\sigma) \otimes \omega$, so we have to check that we get the same result when we apply ∇ to either way of associating the tensor product.

$$\nabla \left(\sigma \otimes (f\omega) \right) = \sigma \otimes \left(df \wedge \omega \right) + \sigma \otimes \left(fd\omega \right) + f[\nabla \sigma \otimes \omega] = \sigma \otimes \left(df \wedge \omega \right) + f\sigma \otimes \left(d\omega \right) + f[\nabla \sigma \otimes \omega]$$

$$\nabla \left((f\sigma) \otimes \omega \right) = f\sigma \otimes d\omega + \left[\nabla (f\sigma) \otimes \omega \right] = f\sigma \otimes d\omega + \left[\sigma \otimes df \otimes \omega \right] + \left[f\nabla \sigma \otimes \omega \right] = f\sigma \otimes d\omega + \sigma \otimes (df \wedge \omega) + f\left[\nabla \sigma \otimes \omega \right]$$

The above computation tells us that ∇ is well-defined on the tensor product over C^{∞} -functions. So we have maps:

$$C^{\infty}E \to C^{\infty}E \otimes \Omega^1 \to C^{\infty}E \otimes \Omega^2 \to \dots$$

Lemma: ∇^2 is 0 for all $C^{\infty}E \otimes \Omega^k \to C^{\infty}E \otimes \Omega^{k+1} \to C^{\infty}E \otimes \Omega^{k+2}$ if and only if $\nabla^2 : C^{\infty}E \to C^{\infty}E \otimes \Omega^2$ is 0.

Definition. If this happens, ∇ is called integrable.

Another using perspective: ∇ is integrable if and only if for any commuting vector fields V, W, $\nabla_V \nabla_W = \nabla_W \nabla_V$ as maps $C^{\infty} E \to C^{\infty} E$. And, as mentioned before, ∇ is integrable if and only if the holonomy around every contractible loop is trivial.

4. From local systems to connections, from holomorphic vector bundles to $\overline{\partial}$ -connections

Given $E \to X$ a local system, I'll define a connection on $C^{\infty}E$.

Take trivializations U_i on which E is just $U_i \times R^r$ and for which the transition maps are locally constant. I define $\nabla \sigma = d\sigma$.

We need to check well-definedness. Say on the intersection of open sets U_{ij} are related by $g_{j\leftarrow i}$ locally constant. Given σ in *i*-chart, member of *j*-chart is $g_{j\leftarrow i}\sigma$.

We have

$$d(g_{j\leftarrow i}\sigma) = (dg_{j\leftarrow i})\sigma + g_{j\leftarrow i}d\sigma = g_{j\leftarrow i}d\sigma$$

where the first term vanishes because $g_{i \leftarrow i}$ is locally constant and, thus, $dg_{i \leftarrow i} = 0$.

So this formula gives a well-defined section of $C^{\infty}E \otimes \Omega^1$. Moreover $\nabla^2 = 0$ because $d^2 = 0$. We can now do something analogous with holomorphic vector bundles.

Given X complex manifold, $E \to X$ smooth complex vector bundle, we define a $\bar{\partial}$ -connection to be a map $\nabla : C^{\infty}E \to C^{\infty}E \otimes \Omega^{0,1}$ such that:

$$\begin{aligned} \nabla(\sigma+\tau) &= \nabla(\sigma) + \nabla(\tau) \\ \nabla(f\sigma) &= \sigma \otimes \bar{\partial}f + f \nabla\sigma \end{aligned}$$

Given $V = \sum f_i \partial / \partial \bar{z}_i$ we define $\nabla_V \sigma = \langle V, \nabla(\sigma) \rangle$. So a $\overline{\partial}$ -connection only lets us take derivatives by (0, 1)-vector fields.

Given a complex manifold X and $E \to X$ holomorphic vector bundle, define a $\bar{\partial}$ -connection by:

- (1) Passing to charts where $E \cong U_i \otimes C^r$
- (2) Defining $\nabla \sigma = \bar{\partial} \sigma$

This is well-defined since $\bar{\partial}g = 0$ by the holomorphic condition. And as before, $\nabla^2 = 0$. This is exact, because exactness is a local concept and we have already proven the Dolbeault lemma.

In particular, doing this with $E = \mathcal{H}^p$ we get

$$0 \to \Omega^{p,0} \to \Omega^{p,1} \to \Omega^{p,2} \to \dots$$

This is the Dolbeault complex. We now know how to do this for any holomorphic vector bundle.

Let's summarize:

For local systems:

- The kernel of $\nabla: C^{\infty}E \to C^{\infty}E \otimes \Omega^1$ is locally constant functions.
- The deRham complex $0 \to LC \to C^{\infty}E \to C^{\infty}E \otimes \Omega^1 \to \text{is exact.}$
- For q > 0, we have $H^q(C^{\infty}E \otimes \Omega^p) = 0$, because of partitions of unity.
- So $\hat{H}_{DR}^q(E) = H^q(LC(E)).$

For holomorphic vector bundles:

- The kernel of $\nabla: C^{\infty}E \to C^{\infty}E \otimes \Omega^{0,1}$ is holomorphic functions.
- The Dolbeault complex 0 → Hol(E) → C[∞]E → C[∞]E ⊗ Ω^{0,1} → is exact.
 For q > 0, we have H^q(C[∞]E ⊗ Ω^{0,p}) = 0, because of partitions of unity.
 So H^q_{Dolb}(E) = H^q(Hol(E)).