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We are headed towards proving:
If U a polydisc, W ⊂ U a closed smooth C-submanifold of dimension d then the topological

cohomology Hk
top(W,C), with coeffficients in C, is the cohomology of the complex :

0→ H0(W )→ H1(W )→ H2(W )→ · · · → Hd → 0,

where the above sequence is the De Rham complex using holomorphic forms.
We did this computation with C− {0} earlier.

Exactness of the Holomorphic De Rham Complex on a Smooth Manifold

Here is a fact which we were close to in a previous lecture, but never got around to proving:

Proposition 1. For any smooth C-submanifold of dimension d, the sequence

0→ LCC → H0 → H1 → · · · → Hd → 0

is an exact sequence of sheaves.

Proof. Exactness for sheaves is a local thing, so it suffices to check this on a polydisc U1 × U2 ×
· · ·×Un. Suppose we are given an exact p-form ω =

∑
I fIdzi1 ∧ dzi2 ∧ · · · ∧ dzip , where the fI ’s are

holomorphic on the polydisc and ∂ω = 0. We argue similarly as we have done previously: Prove
the claim by induction on the largest index, k, for which dzk has a nonzero coefficient in ∂ω. The
base case is when k = 0, in which case there is clearly a preimage, namely 0.

For ` > k, consider the coefficient of dzl ∧ dzi1 ∧ · · · ∧ dzip in ∂ω, which is by definition ∂fI
∂z`
, so

that by assumption ∂fI
∂zl

= 0 for all I. Hence, fI is independent of zk+1, zk+2, . . . , zd.

Now let

α :=
∑
I

±
(∫ zk

0
fI(z1, . . . , zk)

)
dzi1 ∧ . . . dzir−1 ∧ d̂zk ∧ dzir+1 · · · ∧ dzip .

There is no path dependence on the integral inside this definition since we are working on a
polydisc. The ± signs are tricky to figure out but are unimportant. The fundamental theorem of
calculus guarantees that ∂α and ω agree on all of their terms in which dzk shows up, so that ω−∂α
has no dz` terms, ` ≥ k. By induction, we have

ω − ∂α = ∂β

for some holomorphic (p− 1, 0)-form. This shows ω = ∂(α+ β), so that ω is closed as desired.
�

Now apply the preceding proposition to the case of a polydisc U with a closed submanifold W .
The closed embedding ι : W ↪→ U yields a pushforward

(1) 0→ (ι∗LCC)W → ι∗H0
W (U)→ ι∗H1

W (U)→ · · · → ι∗Hd
W (U)→ 0.

We know that Hq(U, ι∗LCC) ∼= Hq(W,LCC) = Hq
top(W,C) where the first equality is a general

fact about pushforwards of closed embeddings, and the last equality was mentioned earlier.

We also know that H0(U, ι∗Hp
W ) ∼= H0(W,Hp

W ). We want to show that Hq(U, (ι∗LCC)W ) is com-
puted by the cohomology of the complex (1). To see this, is suffices to show the higher cohomology
of ι∗Hp

W vanishes.
This leads us to a lemma which follows from problem 6 on Homework 3. Namely:
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Lemma 1. If E is a sheaf of O-mods and

0→ FN → FN−1 → · · · → F0 → E → 0

is an exact complex, where the Fi are free O-mods and Hq(U,O) = 0 for q > 0, then Hq(U, E) = 0
for q > 0.

Proof. We will merely sketch the proof as it was done on the homework. First, note that the higher
cohomlogy of a free O-module will also vanish, as Hq(U,Ob) ∼= Hq(U,O)⊕b. To see the higher
coholomology of E vanishes, let Zi := Im(Fi → Fi−1) and observe that we have the following short
exact sequences (one for each i):

0→ Zi+1 → Fi → Zi → 0.

Since the Fi’s have vanishing higher cohomology, for q > 0, the LES in cohomology gives isomor-
phisms Hq(U,Zi) ∼= Hq+1(U,Zi+1), and chaining these together gives isomorphsims

Hq(U, E)→ Hq+1(U,Z1)→ · · · → Hq+N+1(U,ZN+1) = Hq+N+1(U, 0) = 0,

as desired.
When q = 0, similar reasoning gives an exact sequence on global sections:

0→ Hq(U,FN )→ · · · → Hq(U,F0)→ Hq(U, E)→ 0,

which we will be referencing later. �

In a few seconds, we will present a general situation– Cartan’s Theorem –that will supply us
with left resolutions by free O-modules as in the hypotheses of the preceding lemma. However, we
already can get our hands on some examples.

Example 1: Let W be a smooth hypersurface, W = {z : F (z) = 0}. One has an exact sequence
of sheaves

0→ OU
·F−→→ OU → ι∗OW → 0

where the left map is multiplication by F and the right map is restriction.
Note: To ensure that W is actually a (nonsingular) hypersurface, it suffices that one of the ∂F

∂zi
’s

is nonzero on W , in which case we have an implicit function theorem: Locally about any point for
which ∂F

∂z1
6= 0, we can take as (F, z2, . . . , zn) coordinates

Example 2: If the dimension of U is 2 and the dimension of W is 1, we have

0→ O
( ∂F
∂x

dx, ∂F
∂y

dy)
−−−−−−−−→ H1

U → ι∗H1
W → 0.

The left map sends a holomorphic f to f ∂F
∂x dx + f ∂F

∂y dy. Note that the middle term is a free

O-module on two generators, dx and dy.
In particular, consider the case of a curve in a polydisc. For example, let

U = {(z1, z2) : |z1| < r1, |z2| < r2}

and W be defined by F (z1, z2) = z1z2 − 1. So W is the annulus, A = {z : 1
r2
< |z| < r1}, after

projecting onto z1. Hence, H1(A,O) = 0.

Example 2’: The preceding example has a generalization to higher dimensions. Let W be a
smooth codimension r mandifold defined by F1 = . . . Fr = 0. One has a similarly explicit resolution:

0→ O → · · · → O(r3) → O(r2) → Or → O → OW → 0.

Here, the maps O(rk) → O( r
k−1) are as follows. We will think of them as left multiplication by a

matrix whose columns are indexed by k-subsets of [r] = {1, 2, . . . r} and whose rows are indexed
by (k − 1)-subsets of [r]. The column corresponding to a k-subset, I = {i1, i2 . . . ik} with the ij ’s
increasing, will have a nonzero entry in the rows corresponding to the (k − 1)-subsets

I − {ij}, j = 1, 2 . . . k.

Furthermore, the entry in the row corresponding to j will be (−1)jFij .
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Coherent Sheaves and Cartan’s Thoerems

Now we state Cartan’s Theorem. First, a definition:

Definition 1. For a complex manifold X and sheaf E of O modules, we call X and E coherent if
there exists an open cover {Ui}, and on each Ui, an exact sequence of sheaves:

Obi(Ui)
Ui

→ Ob0(Ui)
Ui

→ E|Ui → 0

(i.e., the sheaf is “finitely presented” locally).

Theorem 1. (Cartan) Suppose we are given U an open polydisc, K a closed subpolydisc, and E a
coherent sheaf on U . Then we can shrink U to some open V , with K ⊂ V ⊂ U , such that E has a
resolution

0→ Obn → Obn−1 → . . .Ob0 → E → 0

on V . Here, n is the dimension of U .

To get around the technical assumption on V , note that applying the above repeatedly we obtain
a sequence of open polydiscs V0 ⊂ V1 ⊂ . . . with U =

⋃
i Vi. Furthermore, Hq(Vi, E) = 0 for q > 0,

so that we may perform the Cech computation with respect to this open cover. We will skip this
computation for now.

By the Lemma, on each Vi, the surjection of sheaves Ob0
Vi
→ E → 0 gives a surjection of global

sections O(Vi)
b0 → E(Vi)→ 0.

Let the second map in the above be right multiplication by (f1, . . . , fb0). Let x ∈ Vi. Since the
map is surjective, these fi’s induce a surjective map on stalks Ob0

x → Ex. In other words, on each
Vi, there exists global sections f1, . . . , fb0 of E such that the Ox-module spanned by the fi’s is Ex.
This shows E|Vi is “globally generated” at x. One can show E is globally generated everywhere.
This is part of the following:

Theorem 2:
(Cartan Theorem A) On a polydisc, every coherent sheaf is globally generated.
(Cartan Theorem B) On a polydisc, every coherent sheaf has vanishing Hq, q > 0.

In order to apply the theorem, note that if W is any complex subvariety (not necessarily assumed
to be smooth), OW is coherent. Here OW means functions that are holomorphic in some neigh-
borhood of W . Furthermore, Ker, CoKer and Im of maps between coherent sheaves are coherent.
These two facts in conjunction generate lots of examples of coherent sheaves.

Looking Ahead

We previously defined polydiscs to be U1×U2×· · ·×Un where each Ui was an open disc. By the
Riemann mapping theorem, an nonempty simply connected proper subset of C is biholomorphic to
such a disc, so that the theory carries over equally well if we take a product of such spaces. (We
also allow the subsets to be all of Cn, since we have been allowing the radius of the polydisc to be
infinite). In particular, we are allowed to take products of rectangles, as we will be doing in the
upcoming lectures in which we prove Cartan’s theorem for ι∗Hp.

Here is a crude sketch of how we will prove the theorem. Given such a rectangle, subdivide
it into smaller rectangles until one of ∂f

∂xi
6= 0 on each rectangle. This implies W is of the form

F1 = F2 = · · · = Fr = 0 for some Fi’s. Then the Koszul resolution resolves ι∗HpW on each box.
We will then show that given two such resolutions of length k on adjacent boxes, we can glue them
together to get a resolution on the union.

In particular, we will need to do some analysis for this specific case of gluing: suppose we are
given 2 adjacent boxes and E on U ∪ V such that on open neighborhoods of U and V we have
Ob|U ∼= E|U , Ob|V ∼= E|U . Then E ∼= Ob on all of U ∪ V . Once we establish this claim, the rest is
all algebra.

One warning: The most obvious guess is that given W ⊂ U , a codimension r subvariety, then
there exists a free resolution of length r. In fact, the length of the resolution is ≥ to the codimension,
and it is equal for all subvarieties if and only if OW (the structure sheaf of W ) is Cohen-Macaulay.


