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ADAM KAYE

Lemma (Cartan). Let K,L be closed polyboxes in Cn with a common side, U, V
open neighborhoods of K,L respectively. Given H : U∩V → GLr(C) holomorphic in
each coordinate then (after possibly shrinking U and V to U ′ and V ′, still containing
K and L) there are holomorphic maps F : U ′ → GLr(C), G : V ′ → GLr(C) such
that H = F−1G.

Proof when r = 1. Let h = logH (this is ok since U ′ ∩ V ′ can be made simply
connected after the shrinking). Look at the Čech complex

0→ O(U)⊕O(V )→ O(U ∩ V )→ 0.

This computes H1(U ∪ V,O) which we already know to be 0. So there is some
(f, g) ∈ O(U)⊕O(V ) such that g − f = h. Let G = eg, F = ef , then H = F−1G.
We’ll do something similar for the general case, but we need to be careful with
taking log and exp of matrices. �

1. A quantitative Čech vanishing

We are now going to reprove the above result, keeping track of the size of every-
thing. Specifically we’ll show:

The next lemma is substantially corrected from the version presented
in class. I couldn’t quite make the proof in Hugo and Rossi work; so
here is my best fix. David Speyer

Lemma. Given K, L, U , V as above. There are chains of open polyboxes U )
U ′ ) U ′′ ) K and V ) V ′ ) V ′′ ) L and a constant ∈ R>0 such that given
h ∈ O(U ∩ V ) with |h| < M on U ′ ∩ V ′, there are f ∈ O(U ′′), g ∈ O(V ′′) such that
h = g − f with |g|, |f | < CM .

Proof. Let Z be the sheaf of ∂̄-closed (0, 1)-forms so we have the exact sequence

0→ O → C∞ → Z → 0

which induces the exact sequence of chain complexes

0 // O(U)⊕O(V ) //

��

C∞(U)⊕ C∞(V ) //

��

Z(U)⊕ Z(V ) //

��

0

0 // O(U ∩ V ) // C∞(U ∩ V ) // Z(U ∩ V ) // 0
.

We start with h ∈ O(U ∩ V ), and we want to lift it to O(U)⊕O(V ). The first
step is to map h over to C∞(U ∩ V ), meaning to consider the same function as a
smooth function. We then lift h to C∞(U) ⊕ C∞(V ) “using partitions of unity”.
Let’s be explicit about how we do that:

Choose σ : R → [0, 1] such that σ(x1) = 0 on U \ V and σ(x1) = 1 on V \ U
(and σ is smooth) where x1 is the first coordinate in Cn and the common face
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of K and L is a hyperplane with constant x1 coordinate. We can then define
new functions g0 = (1 − σ(x1))h and f0 = −σ(x1)h which can be extended to
V and U respectively by 0. These satisfy |g0|, |f0| < M . Now (f0, g0) lives in
C∞(U) ⊕ C∞(V ). Unfortunately, f0 and g0 are probably not holomorphic. The
map ∂ to Z(U)⊕ Z(V ) measures our failure to take f0 and g0 holomorphic.

On U ∩V , g0−f0 = h so ∂g0/∂z̄1−∂f0/∂z̄1 = 0 where z1 is the first coordinate.
Thus we can define a C∞ function F by F = ∂g0/∂z̄1 on U and F = ∂f0/∂z̄1 on
V . On U ∩V , we have F = (∂σ/∂z̄1)h because h is holomorphic; outside of U ∩V ,
we have F = 0 since it is the derivative of the zero function. So |F | ≤ C1M for
some constant C1, namely, the maximum of the continuous function |∂σ/∂z̄1|.

Choose chains of open polyboxes U ) U ′ ) U ′′ ) K and V ) V ′ ) V ′′ ) L and
a smooth hat function τ such that: τ = 1 on U ′′∪V ′′, and τ is 0 on (U∪V )\(U ′∪V ′),
and 0 ≤ τ ≤ 1.

Define the function θ on U ∪ V by

θ(z) =
1

2πi

∫
U∪V

F (ζ, z2, . . . , zn)

ζ − z1
τ(ζ)dArea

where z = (z1, . . . , zn).
When we proved Dolbeault’s lemma (January 27), we showed that this integral

converges and ∂θ/∂z1 = F on U ′′ ∪ V ′′. We want to bound the size of θ. We have
the simple bound

|θ(z1)| ≤ 1

2π

∫
U ′∪V ′

C1M

|z1 − ζ|
dArea.

(Since τ is zero outside U ′ ∪ V ′, we can use the bound |F | ≤ C1M , which was
proved on U ′ ∪ V ′.)

Choose some radius R large enough that, for any z1 ∈ U ′ ∪ V ′, the box U ′ ∪ V ′
is contained in the disc of radius R around z1. Then our bound is

≤ 1

2π

∫
B(R,z1)

C1M

|z1 − ζ|
dArea.

Switching to polar coordinates, this is

1

2π

∫ R

r=0

∫ 2π

θ=0

C1M

r
rdrdθ =

∫ R

r=0

C1Mdr = C1RM.

So, taking C2 = C1R, we have the bound |θ| < C2M on U ′ ∪ V ′ and ∂θ/∂z1 = F
on U ′′ ∪ V ′′.

Now, set f = f0 − θ and g = g0 − θ. Since ∂θ/∂z̄1 = F we will have ∂f/∂z̄1 =
∂g/∂z̄1 = 0. This makes f and g holomorphic because f0, g0 and θ are holomorphic
in the other variables. In addition,

|f | ≤ |f0|+ |θ| ≤M + C2M = CM

for some constant C. The same argument works for g so we have f, g with |f |, |g| <
CM and f − g = h. �

2. The matrix exponential

Recall the following: For A an r × r matrix, |A| = max|v|=1 |Av| (which exists

by compactness). For (v1, . . . , vn) = v ∈ Cr, |v| = (
∑
|vi|2)1/2. Also

|AB| ≤ |A||B|
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|A+B| ≤ |A|+ |B|

|Aij | ≤ |A| ≤
∑
i,j

|Aij |.

For any matrix a we define ea =
∑∞
k=0

ak

k! and for anyA with |A−Id | < 1, logA =∑∞
k=1

(−1)k−1

k (A− Id)k. These satisfy exp(logA) = A. Also | exp(a)− Id | = O(|a|)
and | log(1 +A)| = O(|A|). Unfortunately, ef+g 6= efeg. The left hand side is

1 + f + g + (f + g)2/2 + · · · = 1 + f + g + f2/2 + fg/2 + gf/2 + g2/2 + . . .

while the right hand side is

(1 + f + f2/2 + . . . )(1 + g + g2/2 + . . . ) = 1 + f + g + f2/2 + fg + g2/2 + . . .

and fg 6= fg/2 + gf/2.
The following lemma says there is a bound on how much ef+g and efeg differ.

Better bounds can be given that depend on the commutator of f and g, but this
will be good enough for our purposes.

Lemma. There is a constant C > 0 such that if |f |, |g| < 1/10 then

|ef+g − efeg| ≤ C|f ||g|.

Proof. ∣∣∣∣∣efeg −
(

Id +

∞∑
k=1

fk

k!
+

∞∑
k=1

gk

k!

)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k,l≥1

fkgl

k!l!

∣∣∣∣∣∣
≤
∑
k,l≥1

|f |k|g|l

k!l!
= (e|f | − 1)(e|g| − 1) ≤ C1|f ||g|

for some constant C1. We have a similar inequality for ef+g:∣∣∣∣∣ef+g −
(

Id +

∞∑
k=1

fk

k!
+

∞∑
k=1

gk

k!

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
k,l≥1

1

(k + l)!

∑
orderings of
k f ’s and l g’s

(fggfgff . . . )

∣∣∣∣∣∣∣∣
≤
∑
k,l≥1

1

(k + l)!

∑
orderings of
k f ’s and l g’s

|f |k|g|l =
∑
k,l≥1

1

(k + l)!

(k + l)!

k!l!
|f |k|g|l

= (e|f | − 1)(e|g| − 1) ≤ C1|f ||g|.
Then we apply the triangle inequality and we win! �

We also need

Lemma (Runge). Given K a compact polybox in Cn, U an open neighborhood
about K, f ∈ O(U), and ε > 0, there is a polynomial p such that |f − p| < ε on K.

This theorem is obvious for disks because we can just cut off the Taylor series,
but some trickiness is necessary to get it for any region. It will be proved in the
homework.
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3. Proving Cartan’s Lemma

Remember that given H : U ∩ V → GLr C we want H = F−1G for some
F : U → GLr C, G : V → GLr C.

Step 1: Given δ > 0 we can shring U and V and write H = H0H1 · · ·HN (where
each Hi : U ∩ V → GLr C) with |Hi − Id | < δ for i > 0 and H0 constant.

Shift coordinates so that O ∈ U ∩ V . So for z ∈ U ∩ V , α ∈ [0, 1], αz is also in
U ∩ V . The idea is that

H(z) = H(0)(H(0)−1H(α1z))(H(α1z)
−1H(α2z)) · · · (H(αN−1z)

−1H(z))

and this will give us what we want for suitable choices of αi. We can choose
K ⊂ U ′ ⊂ K ′ ⊂ U and L ⊂ V ′ ⊂ L′ ⊂ V such that for any α ∈ [0, 1] there is an
interval (β1, β2) around α with |H(βz)−1H(αz)− Id | < δ/100 for β ∈ (β1, β2) and
z ∈ K ′ ∩ L′. For α1, α2 in (β1, β2) we then have |H(α1z)

−1H(β2z) − Id | < δ. By
compactness of [0, 1] there are finitely many such intervals and we can take the αi’s
to be in the overlaps of successive intervals.

Step 2: Let hi = logHi. By Runge’s lemma we can (after shrinking our neigh-
borhoods again) find pi, a collection of r× r matrices with polynomial entries, such
that |hi − pi| is very small. Note that epi is defined and in GLr C everywhere.
Replacing H by H ′ = e−pN e−pN−1 · · · e−p1H(0)−1H, we have reduced to the case
where |H− Id | is very small. This is because if (F ′)−1G = H ′ we can just multiply
F ′ by H(0)ep1 . . . epN to get a solution for F−1G = H.

Step 3: Let h = logH and let h = f − g with |f ||g| < C1|h|. Let F1 = ef , G1 =
eg, H1 = F1HG

−1
1 . Note that

|H1 − Id | = |efeg−fe−g − Id | = |ef (e−feg +O(|f ||g|))e−g − Id |

= |O(|f ||g|)| ≤ C2|f ||g| ≤ C2C
2
1 |h|2 ≤ C2C

2
1C

2
3 |H − Id |2.

(Here the C3 is the constant in the bound |h| = O(|eh − 1|).)
Take H close enough to Id, so that |H1− Id | < 1

2 |H − Id |. Let h1 = logH1, and

let h1 = g2−f2, F2 = ef2 , G2 = eg2 , H2 = F2H1G
−1
2 etc. Then |Fk− Id | = O(2−k)

and |Gk − Id | = O(2−k) so F := · · ·F2F1 and G := · · ·G2G1 converge. Then

FHG−1 = · · ·F2F1HG
−1
1 G−12 · · ·

= (Id +O(2−k−1))(Id +O(2−k))(Id +O(2−k−1)) = Id +O(2−k)

so FHG−1 = Id.

4. A remark on matrix logarithms

Remark: After class, several students asked me a good question. Given U a
simply connected domain in Cn, and H a holomorphic function U → GLr C, is
there a holomorphic logarithm h of H? Recall that this is true for r = 1: Even
though the power series for log does not converge if H is far from 1, the simple
connectedness of U still lets us define the logarithm.

The answer is no. I’ll make life easier on myself and just show that, if we
have H(0) = Id, and require that h(0) = 0, there need not be a logarithm. I am
reasonably sure you should be able to extend this example to work without pinning
down h at a basepoint.
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The key point is that the differential of the exponential map is not always in-
vertible. Let J be the matrix

(
0 1
−1 0

)
. Note that J2 = −Id so we have

eθJ =
∑ θnJn

n!
=
∑
m

(−1)m
θ2m

(2m)!
Id +

∑
m

(−1)m
θ2m+1

(2m+ 1)!
J = (cos θ)Id + (sin θ)J.

In particular, notice that eπJ = −Id.
We will show that the matrix exponential, as a map from 2 × 2 matrices to

themselves, has noninvertible differential at πJ .

Proof that the matrix exponential has noninvertible differential at πJ . Let S be the
set of matrices of the form g(πJ)g−1, for g ∈ GL2(C). Explicitly, S is given by the
equations Tr = 0 and det = 1, and is a two dimensional complex manifold. Now,
for g(πJ)g−1 in S, we have

eg(πJ)g
−1

=
∑ πn(gJg−1)n

n!
= g

(∑ πnJn

n!

)
g−1 = g(−Id)g−1 = −Id

where the second equality is by g’s and (g−1)’s canceling.
So the matrix exponential collapses S to a point. So the differential of exp must

vanish on the tangent plane to S at πJ . �

Now, choose M a 2 × 2 matrix such that the vector in direction M is not in
the image of the differential of the exponential map at πJ . Look at the map
H : (x, y) 7→ exJ+yM . The image of this map is invertible in an open neighborhood
U of [0, π] × {0} within C2. Now, suppose that H has a logarithm h on U with
h(0, 0) = 0. Then one can show that h(θ, 0) = θJ . Then, for small t, we are suppose
to have exp(h(θ, t)) = −Id + tM . But we chose M so that there is no smooth curve
f(t) with f(0) = πJ and f(t) = −Id + tM + O(t2). So h(π, t) is not smooth, and
h is not holomorphic.


