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1. Differential Forms

Let X be a smooth manifold. A k-form on X is an object which, at each point x ∈ X, assigns
a real value to k tangent vectors v1, . . . , vk ∈ TxX. A k-form is linear and anti-symmetric in v1,
. . . , vk, and varies smoothly with respect to x. Let Ωk(X) denote the space of k-forms on X. If
x1, . . . , xn are local coordinates on X (dimX = n) then a typical k-form looks like∑

I

fi1...ik(x) dxi1 ∧ · · · ∧ dxik , fi1...ik(x) is smooth

and some typical identities are

f(x, y) dx ∧ dy = −f(x, y) dy ∧ dx
= f(x, y) dx ∧ (d(x+ y))

dx ∧ dx = 0.

1.1. Wedge Product. The wedge product is a map ∧ : Ωk(X) × Ωl(X) −→ Ωk+l(X) which
is bilinear, associative, and anti-symmetric. Anti-symmetric means that given ω ∈ Ωk(X) and
η ∈ Ωl(X),

ω ∧ η = (−1)klη ∧ ω.
Locally, the wedge product is defined by C∞-linearly extending the map

(f(x) dxi1 ∧ · · · ∧ dxik , g(x) dxj1 ∧ · · · ∧ dxjl) 7−→ f(x)g(x) dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjk .

In particular, anti-symmetry implies that dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjk = 0 if any of the
i1, . . . , ik, j1, . . . , jl are repeated.

1.2. Exterior Derivative. The exterior derivative is a linear map d : Ωk(X) −→ Ωk+1(X) for
k > 0. For f a 0-form, that is to say, a smooth function, we have

df =
∑ ∂f

∂xi
dxi.

In general, d is given by

d

(∑
I

fIdxi1 ∧ · · · ∧ dxik

)
=
∑
I

dfI ∧ dxi1 ∧ · · · ∧ dxik

which can be checked to satisfy d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη. Given a smooth function f
and v ∈ TxX,

(df)(x)(v) = lim
t→0

f(γ(t))− f(γ(0))

t

where γ : (−ε, ε) −→ X is a path such that γ(0) = x and γ′(0) = v.

1.3. Stokes’ Theorem. There is a coordinate free formula for the exterior derivative: Let ω ∈
Ωk(X) and V1, . . . , Vk+1 be smooth vector fields on X. Then

dω(V1, . . . , Vk+1) =
∑

16i6k+1

(−1)i−1Vi(ω(V1, . . . , V̂i, . . . , Vk+1))

+
∑

16i<j6k+1

(−1)i+jω([Vi, Vj ], V1, . . . , V̂i, . . . , V̂j , . . . , Vk+1),
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where the hats indicate omitted arguments. Suppose we have k + 1 commuting flows V1, . . . , Vk+1

([Vi, Vj ] = 0) and let ω(0, . . . , t, . . . , 0) := ω(φi(t)) where φi : X × (−ε, ε) −→ X is the flow adapted
to Vi. Then, by the above equation

(dω)(V1, . . . , Vk+1) =
∂

∂t

∣∣∣∣
t=0

ω(t, 0, . . . , 0)(V2, . . . , Vk+1)−
∂

∂t

∣∣∣∣
t=0

ω(0, t, 0, . . . , 0)(V1, V3, . . . , Vk+1)+

· · ·+ (−1)k
∂

∂t

∣∣∣∣
t=0

ω(0, . . . , 0, t)(V1, . . . , Vk).(1)

We can integrate a (compactly supported) k-form on a k-dimensional (orientable) submanifold of
X by the usual Riemann integral

∑
mesh ω(x)(V1, . . . , Vk), where Vi are commuting vector fields

locally on the submanifold, and taking the limit as the size of mesh approaches zero, then add the
integrals defined locally together by partition of unity.

Consider a (k + 1)–box with each side length t and coordinates given by flows adapted to com-
muting vector fields, V1, . . . , Vk+1. Notice that

∂

∂t

∣∣∣∣
t=0

ω(t, 0, . . . , 0)(V2, . . . , Vk+1) = lim
t→∞

1

t

(
1

tk

∫
Face 1

ω − 1

tk

∫
Face 2

ω

)
(2)

and similarly for other terms (signs workout!). Observe that∫
Box

dω ≈ tk+1

(
∂

∂t

∣∣∣∣
t=0

ω(t, 0, . . . , 0)(V2, . . . , Vk+1) + · · ·+ (−1)k
∂

∂t

∣∣∣∣
t=0

ω(0, . . . , 0, t)(V1, . . . , Vk)

)

for t� 0 by (??). The right-hand side is tk+1
∫
∂Box ω+o(tk+1) by (??) which shows that for t� 0,∫

∂Box
ω ≈

∫
Box

dω.

As a matter of fact, more is true:

Theorem 1. (Stokes’ Theorem) If B is a k-dimensional oriented submanifold of X with boundary,
then for compactly supported k-form ω ∫

∂B
ω =

∫
B
dω.

1.4. Pullback. Let F : X −→ Y be a smooth map and ω be a k-form on Y . We define F ∗ω a
k-form on X by

(F ∗ω)(x)(v1, . . . , vk) = ω(F (x))(F∗(v1), . . . , F∗(vk))

where v1, . . . , vk ∈ TxX and F∗ : TxX −→ TF (x)Y is a linear map. Some properties of F ∗ are

(1) F ∗(ω + η) = F ∗ω + F ∗η.
(2) F ∗(ω ∧ η) = F ∗ω ∧ F ∗η.
(3) F ∗(dω) = d(F ∗ω).
(4) If F restricts to a diffeomorphism between B, a k-dimensional submanifold X and C, a

k-dimensional submanifold of Y , then∫
B
F ∗ω =

∫
C
ω.

2. Poincaré Lemma

Let U be a contractible open subset of Rn. Then,

Ωk−1(U)
d // Ωk(U)

d // Ωk+1(U)

is exact for 0 < k 6 n.
The point is we want to define an operator s which takes a closed k-form ω and gives a (k − 1)-

form sω such that d(sω) = ω. As a matter of fact, we will define s : Ωk(U) −→ Ωk−1(U) such that
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for any ω, we have dsω + sdω = ω. Hence, if dω = 0 then sdω = 0 (s will be linear) so dsω = ω.
That is to say, s is a chain homotopy between identity map and zero map:

Ωk−1(U) // Ωk(U)
d //

s

yy
Id
��

Ωk+1(U)

s

yy
Ωk−1(U)

d // Ωk(U) // Ωk+1(U)

where ds+ sd = Id− 0.
Since U is contractible, there exists a smooth map ρ : U × [0, 1] −→ U such that ρ|U×{0} is the

constant map to a point u0 ∈ U and ρ|U×{1} = Id. Suppose ω ∈ Ωk−1(U) such that

ρ∗ω =
∑
I

fI dxi1 ∧ · · · ∧ dxik +
∑
J

gJ dt ∧ dxj1 ∧ · · · ∧ dxjk−1
.

We define

sω :=
∑
J

(∫ 1

0
gJ dt

)
dxj1 ∧ · · · ∧ dxjk−1

.

Notice that

ρ∗(dω) = d(ρ∗ω) =
∑
I,l

∂fI
∂xl

dxl ∧ dxi1 ∧ · · · ∧ dxik +
∑
I

∂fI
∂t

dt ∧ dxi1 ∧ · · · ∧ dxik

+
∑
J,l

∂gJ
∂xl

dxl ∧ dt ∧ dxj1 ∧ · · · ∧ dxjk−1

which implies that

s(dω) =
∑
I

(∫ 1

0

∂fI
∂t

dt

)
dxI −

∑
J,l

(∫ 1

0

∂gJ
∂xl

dt

)
dxl ∧ dxJ .

Also

d(sω) =
∑
J,l

∂

∂xl

(∫ 1

0
gJ dt

)
dxl ∧ dxJ =

∑
J,l

(∫ 1

0

∂gJ
∂xl

dt

)
dxl ∧ dxJ ,

hence

d(sω) + s(dω) =
∑
I

(∫ 1

0

∂fI
∂t

dt

)
dxI =

∑
I

(
fI (x, 1) dxI − fI (x, 0) dxI

)
= ρ(x, 1)∗ω − ρ(x, 0)∗ω = ω

since ρ(x, 1) = IdU and ρ(x, 0) = constant map.
Second proof: Suppose U = (a1, b1)× · · · × (an, bn). and let ω be a closed k-form. We induct

on the largest p such that dxp appears in ω. If no such p appears then ω = 0 and ω = d · 0 so ω is
trivially exact. In general, suppose

ω =
∑
I

fI dxi1 ∧ · · · ∧ dxik =
∑
I

fI dxI .

For q larger than p, the coefficient of dxq ∧dxI in dω is
∂f

I
∂xq

since q does not appear in I. Therefore,
∂f

I
∂xq

= 0 (dω = 0). As U is connected, fI is constant with respect to xq where q > p.

Set

α =
∑
I

(∫ bp

ap

fI (x1, . . . , xp−1, t, xp+1, . . . , xn) dt

)
dxi1 ∧ · · · ∧ dxik−1

.

Then,

dα =
∑
p∈I

fIdxI +
∑

J⊆{1,...,p−1}

gJdxJ

so ω− dα is a sum of dxK with K ⊆ {1, . . . , p− 1}. (We have used that fI is constant with respect
to xq to see that the integral is constant with respect to xq for q > p.) By inductive hypothesis,
ω − dα = dβ since d(ω − dα) = dω = 0. Hence, ω = d(α+ β).


