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TENGREN ZHANG

1. Definitions and Examples of Sheaves and Presheaves

Let X be a topological space. A presheaf E gives a set E(U) for every open set U ⊂ X such that
for every inclusion of open sets V ⊂ U ⊂ X, we have a map ρUV : E(U)→ E(V ) called restriction
that obeys the presheaf axioms, i.e. ρUU = Id for any open set U ⊂ X and ρUW = ρVW ◦ ρUV for all
open sets W ⊂ U ⊂ V .

A sheaf is a presheaf with the additional property that for every open set U and every open

cover {Ui} of U , if there are fi ∈ E(Ui) such that ρUi
Ui∩Uj

(fi) = ρ
Uj

Ui∩Uj
(fj) for all pairs (i, j), then

there exists a unique f ∈ E(U) such that ρUUi
(f) = fi for all i. Note that if we start with an open

cover {Ui} of U and some f ∈ E(U), and define fi := ρUUi
(f), then the presheaf condition ensures

ρUi
Ui∩Uj

(fi) = ρUi
Ui∩Uj

◦ ρUUi
(f) = ρUUi∩Uj

, so for any pair (i, j), ρUi
Ui∩Uj

(fi) = ρ
Uj

Ui∩Uj
(fj).

Here are some examples of presheaves and sheaves:

(1) Let X be a topological space, and for every open subset U ⊂ X, let E(U) = RU , the set of
real valued functions on U . Let ρUV be restriction. This is a sheaf.

(2) For every open subset U ⊂ X, if we let E(U) to be the continuous functions from U to R
and ρ be restriction, then we also get a sheaf.

(3) Let X be a smooth manifold and U ⊂ X be open. Let E(U) be the set of smooth R-valued
functions on U and ρ be restriction. This again is a sheaf.

(4) If X is a complex manifold or an open subset of Cn, then the assignment of each open
subset of X to the C-valued C-analytic functions on U , with ρ being restriction, is also a
sheaf.

(5) Let X be a smooth manifold, Ωk(U) the smooth k-forms on U and ρ restriction. Ωk is also
a sheaf.

(6) The closed k-forms are k-forms ω on U such that dω = 0. If X is a smooth manifold, the
closed k-forms with the usual restriction form a sheaf.

(7) The exact k-forms are k-forms ω on U such that there is some (k − 1)-form η on U with
dη = ω. If X is a smooth manifold, the closed k-forms with the usual restriction form a
presheaf but not a sheaf, because even if there is some ηi on each Ui in the open cover of U
such that dηi = ω|Ui , there need not been a global η on U such that dη = ω.

(8) The constant functions on any topological space X forms a presheaf, while the locally
constant functions form a sheaf.

(9) Let X be a topological space and choose x ∈ X. For any open set U ⊂ X, let

E(U) =

{
R if x ∈ U
{0} if x /∈ U , ρUV =

{
Id if x ∈ V ⊂ U
0 otherwise

.

This is a sheaf, known as the skyscraper sheaf .

Let X be a topological space. A sheaf of abelian groups is a sheaf E that assigns to each open
subset U ⊂ X an abelian group, and each ρUV is a morphism of groups. A sheaf of commutative
rings is a sheaf that assigns to each open subset U ⊂ X a commutative ring, and each ρUV is a
morphism of rings. In particular, a sheaf of abelian groups is a sheaf of commutative rings.

A ringed space is a topological space X with a sheaf O of commutative rings. With this ringed
space, we can define a sheaf of O-modules to be a sheafM whereM(U) is anO(U)-module for all
open U ⊂ X, and each ρUV :M(U)→M(V ) is an O(U)-module morphism, i.e. for all x, y ∈M(U),
ρUV (x) + ρUV (y) = ρUV (x+ y), and for all f ∈ O(U) and x ∈M(V ), ρUV (f · x) = ρUV (f) · ρUV (x). (Here,
we notate both the module morphism M(U) → M(V ) and the ring morphism O(U) → O(V ) as
ρUV , but it should be clear from the context which map we are referring to.)
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Examples of sheaves of rings include locally constant functions on topological spaces, smooth
functions on smooth manifolds, analytic functions on analytic manifolds. Examples of sheaves of
modules include k-forms (or sections of vector bundles) as modules of C∞ functions, closed k-forms
as modules of locally constant functions (on differentiable manifolds).

2. maps of sheaves and sheafification

Let X be a topological space and E , F two sheaves on X. A map of sheaves φ : E → F is
the data, for every open set U ⊂ X, of a map φ|U : E(U)→ F(U) such that for every V ⊂ U , the
following diagram commutes:

E(U)

ρUV
��

φ|U // F(U)

ρUV
��

E(V )
φ|V // F(V )

Given a topological space X and a presheaf E , for any point x ∈ X, the stalk Ex is the direct
limit lim−→U3x E(U) := (

∐
U3x E(U))/ ∼. Here, for f ∈ E(U), g ∈ E(V ), x ∈ U ∩ V , we define f ∼ g

if there exists some open set W ⊂ U ∩V , W 3 x such that ρUW (f) = ρVW (g). Note that it is possible
that W is smaller than U ∩ V . You may have seen this concept in an analysis class in the notion
of a germ : A germ is an equivalence class of functions on a pointed topological space, where two
functions are equivalent if they agree in some neighborhood of the marked point.

Let E and F be two sheaves on X and φ : E → F be a map of sheaves. For any f ∈ Ex, choose a
representative (U, f̃) (i.e. U 3 x is an open set and f̃ ∈ E(U) represents f) and let g̃ = φU (f̃). One

can check that if we chose another representative (U ′, f̃ ′) and let g̃′ = φU ′(f̃ ′), then g̃ ∼ g̃′. Thus,
φ induces a map of stalks φ : Ex → Fx.

Let φ be a map of sheaves. We say φ is injective if the induced map on stalks φ : Ex → Fx
is injective for all x. This is equivalent to φU : E(U) → F(U) being injective for all open sets U .
Similarly, φ is said to be surjective if φ : Ex → Fx is surjective for every x. This is equivalent
to saying that for every open set U and every g ∈ F(U), there is an open cover {Ui} of U and
fi ∈ E(Ui) such that φ|Ui(fi) = g|Ui = ρUUi

(g).
Let P be a presheaf. The sheafification of P is the sheaf S where S(U) is the set of functions

f : U →
∐
x∈U Px such that f(x) ∈ Px for all x and there is an open cover {Ui} of U and gi ∈ P(Ui)

with the property that for all y ∈ Ui, gi represents f(y) in Py. One can check here that P is a sheaf
with ρ being restriction, and that it satisfies the following universal property:

Theorem: Let P be a presheaf and S its sheafification. There is a map of presheaves P → S
such that for any map of presheaves P → E , where E is a sheaf, there exists a unique map of sheaves
S → E that makes the following diagram commute:

P

��

// E

����
��

��
�

S
Given a topological space X, let E and F be sheaves of abelian groups and let φ : E → F be

a map of sheaves. We define Ker(φ) be the presheaf that assigns each open set U ⊂ X to the
group Ker(φU ). It is a straightforward exercise to check that Ker(φ) is a sheaf with ρ as restriction.
We also define CoKer(φ) to be the sheafification of the presheaf that assigns each open U ⊂ X to
CoKer(φU ) and Im(φ) to be the sheafification of the presheaf that takes each U to Im(φU ). Note
that φ is injective if and only if Ker(φ) = 0 and φ is surjective if and only if CoKer(φ) = 0 (i.e.
they take every open U to the trivial group).

Sheaves of abelian groups form an abelian category . See the appendix for more on this.
Basically, it means that kernels, cokernels and images behave just like they do for abelian groups.

3. Exactness

A sequence of maps of sheaves of abelian groups A α−→ B α−→ C is said to be exact if Ker(β) '
Im(α) or CoKer(α) ' Im(β) as sheaves (These two conditions are equivalent). More explicitly,
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this sequence is exact if for every open set U and every g ∈ B(U) such that β(g) = 0, there is an
open cover {Ui} of U and elements fi ∈ A(Ui) for all i satisfying α(fi) = ρUUi

(g).

Theorem: Suppose 0 → A α−→ B α−→ C → 0 is exact. Then 0 → A(X) → B(X) → C(X) is
exact.

Proof: First, we prove exactness at A(X). Suppose f ∈ A(X) such that α(f) = 0, then
f ∈ Ker(α)(X). Since 0 → A → B is exact, Ker(α)(X) = {0}, which means f = 0. This proves
exactness holds at A(X).

Next, we do the same for B(X). Suppose that g ∈ B(X) and β(g) = 0, then by the exactness
of A → B → C, we know that there is an open cover {Ui} of X and fi ∈ A(Ui) for all i such that
α(fi) = ρXUi

(g). Then

α(ρUi
Ui∩Uj

(fi)) = ρUi
Ui∩Uj

(α(fi))

= ρUi
Ui∩Uj

(ρXUi
(g))

= ρXUi∩Uj
(g)

The symmetry of ρXUi∩Uj
(g) in i and j then implies that α(ρUi

Ui∩Uj
(fi)) = α(ρ

Uj

Ui∩Uj
(fj)), which means

that ρUi
Ui∩Uj

(fi) = ρ
Uj

Ui∩Uj
(fj) by the injectiveness of α. The sheaf condition then implies that there

is a unique f ∈ A(X) such that ρXUi
(f) = fi.

To finish the proof, we now need to show that α(f) = g. On every Ui, we have

ρXUi
(α(f)) = α(ρXUi

(f))
= α(fi)
= ρXUi

(g)

so the uniqueness of the sheaf condition for B implies that α(f) = g.�
Example: Since 0 → [locally constant functions] → C∞ → Ω1 → 0 is exact, we know by the

above theorem that 0→ [locally closed functions](X)→ C∞(X)→ Ω1(X) is also exact. Note that
the statement about exactness of sheaves can be checked on open discs in Rn (since any smooth
manifold is locally diffeomorphic to an open disc in Rn), yet the conclusion is valid on any smooth
manifold.

Next time, we’ll learn about sheaf cohomology, which extends 0 → A(X) → B(X) → C(X) to
an infinite long exact sequence.

4. Appendix: Abelian categories
by David Speyer

In class I defined “abelian category” as “a category where standard arguments about abelian
groups are valid”. If you are curious, here is the actual definition. This material is optional.

In this appendix, “sheaf” is short for “sheaf of abelian groups”. Also, note that Hom(A,B), in
this section, is the set of all sheaf maps from A to B. There is an object which you may have heard
of called the Hom-sheaf , usually denoted Hom; that’s not what I’m talking about.

The defining properties of an abelian category:

(1) Let A and B be two sheaves; let f and g be two maps A → B. Then there is a map
f + g : A → B. This operation makes Hom(A,B) into an abelian group. We have left and
right distributivity: f ◦ (g+h) = f ◦ g+ f ◦h and (g+h) ◦ f = g ◦ f +h ◦ f , where we have
three sheaves A, B and C, and f , g and h are maps between them such that these equations
make sense.

(2) For any sheaf A, we have Hom(A, 0) ∼= Hom(0,A) ∼= {0} (the one element group).
(3) Given two sheaves A and B, there is a sheaf A⊕B such that Hom(A⊕B, C) ∼= Hom(A, C)⊕
Hom(B, C) and Hom(C,A ⊕ B) ∼= Hom(C,A) ⊕ Hom(C,B). These isomorphisms are com-
patible with composition in obvious ways.

(4) Let f : A → B be a map of sheaves. The composition Ker(f)→ A → B is zero. If X → A
is a map of sheaves such that the composition X → A → B is zero, then there is a unique
map of sheaves X → Ker(f) such that the composition X → Ker(f) → A is equal to the
original map X → A. The dual1 assertions are true for CoKer.

1By “dual”, I mean to reverse the direction of all arrows



4 TENGREN ZHANG

(5) For any f : A → B, we have Im(f) ∼= CoKer(Ker(f)→ A) ∼= Ker(B → CoKer(f)).

In a general abelian category, the phrasing of axioms 4 and 5 is that there exist objects with
these properties; these objects are then defined to be the kernel, cokernel and image of f .

4.1. Some weakenings of the abelian axioms. Categories which satisfy the first axiom alone are
sometimes called preadditive , or enriched in abelian groups. A good example of a preadditive
category is “real vector spaces of dimension ≤ 10”, because direct sum takes you outside the
category. Any preadditive category has a canonical minimal enlargement to a category obeying
the first three axioms. For example, “real vector spaces of dimension ≤ 10” embeds into “finite
dimensional vector spaces”. Perhaps for this reason, preadditive categories are rarely studied.

Categories which satisfy the first three axioms are called additive . A good example of an
additive category which does not satisfy axiom 4 is free modules over some ring (say k[x, y]), since
the kernel or cokernel of a map of free modules need not be free2.

Categories which satisfy the first four axioms are called preabelian . A good example of a
category which is preabelian but not abelian is Hausdorff topological groups. Consider the inclusion
Q → R, with the standard topologies. The zero group is both the kernel and the cokernel of this
map. Then CoKer(0→ Q) ∼= Q and Ker(R→ 0) ∼= R, but Q 6∼= R.

4.2. Some important consequences of the axioms. Given a map f : A → B, the following
are equivalent: The map f is a monomorphism (meaning that, for any B → C, the induced map
Hom(A,B) → Hom(A, C) is an injection); the kernel Ker(f) is isomorphic to 0; the sequence
0→ A → B is exact; the map f is injective. In a general abelian category, this is the definition of
“injective”. One defines “surjective” in a dual manner.

Given A α→ B β→ C with αβ = 0, the following are equivalent: The natural map Im(f)→ Ker(β)
is an isomorphism, the natural map CoKer(α)→ Im(β) is an isomorphism, the sequence is exact.
In a general abelian category, this is the definition of “exact”.

Given a map f : A → B, the sequences 0→ Ker(f)→ A→ Im(f)→ 0 and 0→ Im(f)→ B →
CoKer(f)→ 0 are exact.

A map f : A → B is an isomorphism if and only if it is injective and surjective.

Given a complex A α−→ B β−→ C, the natural map CoKer(Im(α)→ Ker(β))→ Ker(CoKer(α)→
Im(β)) is an isomorphism. The sheaf on the left hand side of this map is, by definition, the
cohomology of A → B → C. This is not the same as sheaf cohomology, which is a group, not a
sheaf. I encourage you to forget this notion until we need it several months from now.

2More precisely, one must check that there is no free module which satisfies the conditions in axiom 4. The obvious
object to try would be the kernel/cokernel of the map, but one must also check that nonobvious choices don’t work.


