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On Tuesday, we saw the following result: if we have an exact sequence

0 → E → C0 → C1 → . . .

of sheaves on a space X, and we know that

Hq(Ck) = 0

for all k and for q > 0, then the cohomology of E is the cohomology of the complex

0 → C0(X) → C1(X) → C2(X) → . . .

This observation allowed us to define cohomology by declaring that the higher cohomology groups
should vanish for injective sheaves. Injective sheaves are good for making definitions in sheaf
cohomology, and for proving basic properties, but we don’t want to think about them after that,
so we need to think of other ways to make sheaf cohomology vanish. To that end, in this lecture
we will discuss sheaves on ringed spaces with partitions of unity and Čech cohomology. We will
conclude by proving de Rham’s theorem.

1. Partitions of unity and vanishing of sheaf cohomology

Our underlying space X will always be assumed paracompact today, which means that every
open cover has a locally finite refinement. Here, refinement is defined as follows: given open
covers {Ui} and {Vj}, we say {Vj} refines {Ui} if for all j there is an i with Vj ⊆ Ui. A cover is
locally finite if every point has a neighborhood which meets only finitely many open sets in the
cover.

Given a paracompact space X with a sheaf of commutative rings O on it, we say that O “has
partitions of unity” if, for any locally finite cover Ui, there exist global sections

fi ∈ O(X)

and open sets Vi such that

• Ui ∪ Vi = X

• ρXVi
(fi) = 0

•
∑

fi = 1

To understand the (a priori infinite) sum in the last condition, notice that for every x ∈ X there
is a neighborhood W ∋ x such that only finitely many of the Ui meet W . Then for every Ui not
meeting W , we have W ⊆ Vi so that the restriction

ρXW (fi) = 0.

We thus may compute the sum by taking

∑

ρXW (fi),

since there are only finitely many nonzero terms in this sum. Thus, the third condition says that
for all x ∈ X there is a W ∋ x, meeting only finitely many Ui, such that

∑

ρXW (fi) = 1.
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Remark 1.1.— Instead of introducing the Vi, why do we not just ask that fi|X\Ui
= 0? The

reason is that for general sheaves O, restriction to a closed set doesn’t make sense. For sheaves of
functions on topological spaces, however, it does makes sense and it turns out that if the space is
T3 we’ll get an equivalent definition.

A fundamental fact from differential geometry, which we’ll use later, is that the sheaf of C∞

functions on a manifold has partitions of unity.

Proposition 1.2. If X is paracompact, O is a sheaf of commutative rings with partitions of unity,
and E is any sheaf of O-modules, then

Hq(E) = 0

for all q > 0.

Proof. We’ll induct on q. The base case q = 1 is the hardest part of the proof. Find an injective
sheaf of O-modules I with

0 → E → I
β
→ F → 0

(here we are defining F to be this cokernel - notice that F has the structure of a sheaf of OX-modules
and not just a sheaf of abelian groups).

From the long exact sequence in cohomology, we get an exact sequence

(1) 0 → H0(E) → H0(I) → H0(F) → H1(E) → 0,

and then for each q > 0 we get the exact sequence

0 → Hq(F) → Hq+1(E) → 0.

By induction we are reduced to the case where q = 1. If we can show that

H0(I) → H0(F) → 0

then the exact sequence (1) will finish the argument.
Let a ∈ F(X) = H0(F). Since β is a surjective map of sheaves, there is an open cover {Ui} of

X and there are sections bi ∈ I(Ui) such that β(bi) = a|Ui
. Refining the cover if necessary, we may

assume it is locally finite. Find Vi and fi as in the definition of partitions of unity. We’ll define
ci ∈ I(X) by setting

• ci|Ui
= fibi,

• ci|Vi
= 0.

These local sections really do glue to give global sections ci, because they are consistent on overlaps.
We check this:

fibi|Ui∩Vi
= fi|Ui∩Vi

bi|Ui∩Vi
= 0 · bi|Ui∩Vi

= 0.

We claim that

β
(

∑

ci

)

= a,

where we define the infinite sum as before (we only need to check this claim on an open cover). For
x ∈ X, find an open W ∋ x such that all but finitely many Ui do not meet W . Then

β
(

∑

ci

)

|W =
∑

β(ci)|W .

If Ui does not meet W , then W ⊆ Vi and so ci|W = 0. Thus the latter sum is just

∑

Ui∩W 6=∅

β(ci)|W =
∑

Ui∩W 6=∅

fi · β(bi)|W =
∑

Ui∩W 6=∅

fi · a|W =
∑

fi · a|W = 1 · a|W = a|W ,

which finishes the proof. �



NOTES FOR JANUARY 20 3

2. Čech cohomology

Now we will talk about Čech complexes. These will allow us to compute the cohomology of a
sheaf given the data of an open cover on which we know the cohomology vanishes. More precisely,
for E a sheaf on X, and U an open set, we write EU for the sheaf on X defined by

EU (V ) = E(U ∩ V ).

There is a map of sheaves E → EU given on an open V by ρVU∩V . Now let {Ui} be a locally finite

open cover of X. We define the Čech complex of sheaves on X:

(2) 0 → E →
⊕

EUi
→

⊕

i<j

EUi∩Uj
→

⊕

i<j<k

EUi∩Uj∩Uk
→ . . .

(Here the Ui are indexed by some ordered set I.) The maps in the complex are defined as follows:

E
U1∩...∩Ûs∩...∩Ur

→ EU1∩U2∩...∩Ur

will be restriction followed by multiplication by (−1)s−1. In fact, we claim that (2) is not only a
complex, but an exact sequence of sheaves, which we will now check on stalks. For x ∈ X, let S be
the stalk Ex and label those sets in our locally finite cover which contain x as

Ui1 , Ui2 , . . . , Uim ∋ x.

On the stalk S, our complex becomes

0 → S → S⊕m → S⊕(m
2
) → . . . → S

⊕( m

m−1
) → S → 0 → . . .

This is the complex that computes the reduced simplicial cohomology of the m-simplex in topology
(with coefficients in S). As simplices are contractible, the cohomology of this complex vanishes.

Now, if X has a locally finite cover {Ui} such that

(3) Hq(EUi1
∩...∩Uim

) = 0

for all q > 0, and all i1, . . . , im, m > 0, then we conclude from the exactness of (2) that Hk(E) is
the cohomology of the complex

0 →
⊕

EUi
(X) →

⊕

EUi∩Uj
(X) → . . .

or in other words, the cohomology of the complex

(4) 0 →
⊕

E(Ui) →
⊕

E(Ui ∩ Uj) → . . .

Remark 2.1.— Consider the cohomology Ȟk(E , Ui) of the complex (4) with respect to an arbi-
trary locally finite cover {Ui}, possibly not satisfying condition (3). If {Ui} and {Vi} are locally
finite covers with {Vi} refining {Ui}, then there is a natural map

Ȟk(E , Ui) → Ȟk(E , Vi)

and Godement showed that for any sheaf of abelian groups E on a paracompact space,

Hk(E) = lim
−→
Ui

Ȟk(E , Ui).

Thus the Čech complex could be used to give a definition of sheaf cohomology without reference
to injective resolutions. In fact, suppose we have a short exact sequence of sheaves

0 → A → B → C → 0

and a locally finite cover Ui such that

• 0 → A(Ui1 ∩ . . . ∩ Uik) → B(Ui1 ∩ . . . ∩ Uik) → C(Ui1 ∩ . . . ∩ Uik) → 0 is exact for all i1, . . . , ik.
• Hq(AUi1

∩...∩Uik
) = Hq(BUi1

∩...∩Uik
) = Hq(CUi1

∩...∩Uik
) = 0 for q > 0 and all i1, . . . , ik.
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Then we get a short exact sequence of chain complexes:

0

��

0

��

0 //
⊕

A(Ui) //

��

⊕

A(Ui ∩ Uj)

��

// . . .

0 //
⊕

B(Ui) //

��

⊕

B(Ui ∩ Uj)

��

// . . .

0 //
⊕

C(Ui) //

��

⊕

C(Ui ∩ Uj)

��

// . . .

0 0

The long exact sequence in sheaf cohomology follows from this, exactly as before.

3. de Rham’s Theorem

Theorem 3.1 (de Rham). Let X be a smooth manifold of dimension n. Then the cohomology of
the complex

(5) 0 → Ω0(X) → Ω1(X) → Ω2(X) → . . . → Ωn(X) → 0

is isomorphic to the (topological) cohomology H∗(X,R).

Proof. Letting LC be the sheaf of locally constant functions on X, we will show that both cohomol-
ogy groups referenced in the theorem are isomorphic to the sheaf cohomology H∗(X,LC). (This
sheaf is usually denoted R, but that makes the notation for cohomology ambiguous, until we prove
the result.) Recall that C∞ has partitions of unity. As Ωk has the structure of a C∞-module, we
know that

Hq(X,Ωk) = 0.

We also know, by the Poincaré lemma, that we have an exact sequence of sheaves

0 → LC → Ω0 → Ω1 → Ω2 → . . . → Ωk → 0.

Thus the cohomology of the de Rham sequence (5) computes Hk(X,LC).
To finish, we need to show that the cohomology of the sheaf LC also computes the cohomology

of X. We’ll work with simplicial cohomology; take a triangulation of X. For v a vertex, and F a
face containing v, we define a subset of F :

N(v, F ) = {w ∈ F |w 6∈ F ′, with F ′ a face of F not containing v}.

From these we can build an open cover {Uv} of X by setting

Uv =
⋃

F∋v

N(v, F ).

In the illustration, we are looking at a two dimensional manifold and v is the vertex at the center.
Uv contains the 5 triangles with v as a vertex, but does not contain the sides of them which are
opposite v.



NOTES FOR JANUARY 20 5

Given vertices v1, . . . , vr, we observe that Uv1 ∩Uv2 ∩ . . .∩Uvr is empty if v1, . . . , vr do not form
a face and is contractible if v1, . . . , vr form a face.

In order to compute Čech cohomology with this cover, we thus need to know that

Hk(LCUv1
∩...∩Uvr

)

vanishes for any choice of r vertices v1, . . . , vr which form a face. But this is the same as a sheaf
cohomology group on a smaller space, namely the cohomology group

Hk(Uv1 ∩ . . . ∩ Uvr ,LC|Uv1
∩...∩Uvr

).

We have already seen that this, in turn, is the cohomology of

0 → Ω0(Uv1 ∩ . . . ∩ Uvr) → Ω1(Uv1 ∩ . . . ∩ Uvr) → Ω2(Uv1 ∩ . . . ∩ Uvr) → . . .

which vanishes by the Poincaré lemma, due to the contractibility of Uv1 ∩ . . . ∩ Uvr . Thus we may
use our cover and the Čech complex to compute Hk(LC).

On empty intersections, the sections of LC are of course 0, and on contractible intersections the
sections are isomorphic to R. The Čech complex thus becomes

0 →
⊕

vi

R →
⊕

vi,vj an edge

R →
⊕

vi,vj ,vk a face

R → . . .

which is exactly the simplicial cochain complex for X. This implies that the sheaf cohomology of
LC is isomorphic to the R-valued cohomology of X, as desired. �


