
NOTES FOR 25 JANUARY 2011

KEVIN CARDE

1. Sheaf Cohomology Examples

Basic point: Sheaf cohomology depends on the space and the sheaf. In basic topology, for X a
space, A an abelian group, we have groups Hk(X,A); the coefficients A matter. For “reasonable”
spaces (e.g. finite simplicial complexes),

Hk(X, locally constant A-valued functions) = Hk
top(X,A).

On S1, look at the sheaf LC (sheaf of locally constant real-valued functions). Take the open cover
A ∪ B illustrated below. To use Čech cohomology, we need to know higher cohomology vanishes
on each intersection. Here, each intersection is contractible, hence higher cohomology vanishes.

Then since A and B are connected but A ∩B has two connected components,

(1) 0 // LC(A)⊕ LC(B) // LC(A ∩B) // 0

0 // R⊕ R M // R⊕2 // 0

where M is the matrix

M =

(
1 −1
1 −1

)
(our matrices act on the left, so we think of these as column vectors). Hence

H0(S1,LC) = kerM = R
(

1
1

)
and

H1(S1,LC) = cokerM ∼= R.
For a larger example, we could think of S2 as a cube, with an open cover consisting of open sets

around each facet. We get the Čech complex

0→ R6 → R12 → R8 → 0

with cohomology

H0(S2,LC) = R
H1(S2,LC) = 0

H2(S2,LC) = R.

We will now work through the de Rham isomorphism for the circle (doing it for the sphere is a
good exercise). On the circle, we have an exact sequence of sheaves

0→ LC → C∞ → Ω1 → 0
1
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In general the third term would be Z1 (closed 1-forms), but on a one dimensional manifold, every
1-form is closed. The long exact sequence is

0→ LC(S1)→ C∞(S1)→ Ω1(S1)→ H1(S1,LC)→ 0

where the last 0 is because the sheaf C∞ has partitions of unity, and hence higher cohomology
vanishes.

We have the commutative diagram

0

��

0

��
0 // R⊕ R

(
1 −1
1 −1

)
//

��

R⊕2 //

��

0

0 // C∞(A)⊕ C∞(B) //

��

C∞(A ∩B) //

��

0

0 // Ω1(A)⊕ Ω1(B) //

��

Ω1(A ∩B) //

��

0

0 0

where the first row is the exact sequence (1), and columns are exact by the Poincaré lemma.
Given ω ∈ Ω1(S1), consider it as (ω1, ω2) ∈ Ω1(A)⊕Ω1(B) by restricting to each interval. From

our diagram, we can lift this up to (f1, f2) ∈ C∞(A)⊕ C∞(B) such that dfi = ωi; i.e.,

f1(θ) =

∫ θ

P
ω1

f2(θ) =

∫ θ

P
ω2

where P is a point in one of the connected components of A∩B, and the integrals are computed in
A and B respectively (so in opposite directions). Next we go across to f1 − f2 ∈ C∞(A∩B). This
is 0 in the connected component of A∩B containing P . On the other connected component, this is∮
ω. Therefore, f1−f2 is locally constant, with values 0 and

∮
ω on the two connected components

of A ∩B. Hence

f1 − f2 =

(∮
ω

0

)
in LC(A ∩B) ∼= R2. The image in H1(S1,LC) is therefore

∮
ω.

There are two harder versions in HW 3: one involves using two complexes, 0 → LC → C∞ →
Z1 → 0 and 0→ Z1 → Ω1 → Ω2 → 0.

2. Complex Differential Operators

The main objects today will be smooth functions f : Cn → C,

(x1 + iy1, ..., xn + iyn) 7→ (u, v)

where u(x1, ..., xn, y1, ..., yn) and v(x1, ..., xn, y1, ..., yn) are elements of C∞(R2n). For such an f ,

df = du+ idv.

In particular, z1, ..., zn, z1, ..., zn are such functions Cn → C, so we have dz1, ..., dzn, dz1, ..., dzn
with

dzk = dxk + idyk and dzk = dxk − idyk.
We can rearrange to solve for dxk and dyk:

dxk =
dzk + dzk

2
dyk =

dzk − dzk
2i

.
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Geometrically, dzk is the 1-form that takes a tangent vector and returns the kth component (as
a complex number); dzk returns the complex conjugate. Every smooth 1-form can be uniquely
written as ∑

fk(z)dzk +
∑

gk(z)dzk

where f1, ..., fn, g1, ..., gn are smooth C-valued functions on C2n.
A 1-form ω is called a (1, 0)-form if it is of the form∑

fk(z)dzk.

Similarly, ω is called a (0, 1)-form if it is of the form∑
gk(z)dzk.

For v a tangent vector to Cn, let Jv be v rotated by i. Then ω is a (1, 0)-form if and only if
ω(Jv) = iω(v) and ω is a (0, 1)-form if and only if ω(Jv) = −iω(v).

A smooth manifold X with a map

J : T∗X → T∗X

obeying J2 = −Id and preserving the base (i.e., J takes tangent vectors at P to other tangent
vectors at P ) is called almost complex . On an almost complex manifold, (0, 1)-forms and (1, 0)-
forms are defined in terms of J as above.

An almost complex manifold which locally looks like an open set in Cn is called a complex
manifold.

(The main difference between complex and almost complex: on almost complex manifolds, we
can’t necessarily find n holomorphic functions like z1, ..., zn so that forms can be written in terms
of dzi and dzi.)

For f : C→ C mapping (x, y) to (u(x, y), v(x, y)), we have

df = du+ idv

=

(
∂u

∂x
dx+

∂u

∂y
dy

)
+ i

(
∂v

∂x
dx+

∂v

∂y
dy

)
=
∂u

∂x

(
dz + dz

2

)
+
∂u

∂y

(
dz − dz

2i

)
+ i

∂v

∂x

(
dz + dz

2

)
+
∂v

∂y

(
dz − dz

2

)
=

1

2

(
∂u

∂x
+
∂v

∂y
− i∂u

∂y
+ i

∂v

∂x

)
dz +

1

2

(
∂u

∂x
− ∂v

∂y
+ i

∂u

∂y
+ i

∂v

∂x

)
dz

=
1

2

(
∂(u+ iv)

∂x
− i∂(u+ iv)

∂y

)
dz +

1

2

(
∂(u+ iv)

∂x
+ i

∂(u+ iv)

∂y

)
dz(2)

The 1-form df is a (1, 0)-form if and only if the dz part vanishes; i.e., if and only if

∂u

∂x
− ∂v

∂y
= 0

∂u

∂y
+
∂v

∂x
= 0.

These are precisely the Cauchy-Riemann equations. So df is a (1, 0)-form if and only if f is
holomorphic. Moreover, if f is holomorphic, the above equation for df simplifies to

df = f ′(z)dz.

In general, if f : Cn → C, f is holomorphic if and only if df is a (1, 0)-form, in which case

df =
∑ ∂f

∂zi
dzi.

Let df =
∑
gkdzk +

∑
hkdzk. Then we define del and del-bar as

∂f =
∑

gkdzk

∂f =
∑

hkdzk.
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The automorphism J on the complexification of the tangent bundle has eigenvalues i and −i. ∂ is
the projection onto the i eigenspace and ∂ is the projection on to the −i eigenspace.

Given ω ∈ Ωk(X) with k = p+ q, ω is called a (p, q)-form if

ω =
∑

fI,Jdzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq .

Every smooth k-form is uniquely a sum of a (k, 0)-form, a (k−1, 1)-form, ..., and a (0, k)-form. On
a (p, q)-form, we have

d
(∑

fI,Jdzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq
)

=
∑

(dfI,J)dzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq

=
∑(∑

...dzi +
∑

...dzj

) (
dzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjq

)
,

a sum of (p+ 1, q)-forms and (p, q+ 1)-forms. We define ∂ as the projection onto the (p+ 1, q) part
and ∂ as the projection onto the (p, q + 1) part.
∂ (and same for ∂) obeys all the usual formal properties:

(1) ∂(u+ v) = ∂u+ ∂v
(2) ∂(au) = a∂u
(3) ∂(u · v) = u∂v + v∂u
(4) ∂(ω ∧ η) = (−1)kω ∧ ∂η + ∂w ∧ η where ω ∈ Ωk.

Additionally, if f is analytic, ∂(f · v) = f∂(v).
To integrate ∫

γ
f(z)dz

for some f : C→ C, we break up γ into N subintervals and take the limit

lim
N→∞

N∑
i=0

f(zi)·
1-form

(dz)
tan. vector

(zi+1 − zi)= lim
N→∞

N∑
i=0

f(zi)(zi+1 − zi)

to get the usual complex integral.
For f analytic on some domain D,∫

∂D
fdz =

∫
D
d(fdz) =

∫
D
df ∧ dz =

∫
D

∂f

∂z
dz ∧ dz =

∫
D

0 = 0.

For f : Cn → C, we define ∂f
∂zi

and ∂f
∂zi

such that

df =
∑ ∂f

∂zi
dzi +

∑ ∂f

∂zi
dzi.

Note that this is defined whenever f is smooth (not necessarily holomorphic). Note that f is

holomorphic if and only if ∂f
∂z1

, ..., ∂f∂zn are 0.

Something I didn’t say in class (but should have) One has the explicit formulas:

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
These can be read off from the last line in equation (2).

A warning about the partial notation: on R2, consider the coordinate charts (x, y) and

(x, x+y) (a grid and a slanted grid). Let f be the same function on each. Then ∂f
∂x means different

things in the two charts! (Hence the partial notation can be misleading.)
Next time: The Dolbeault complex 1

0→ holomorphic functions→ Ω0,0 ∂→ Ω0,1 ∂→ Ω0,2 ∂→ ...
∂→ Ω0,n → 0.

and more generally,

0→ holomorphic (p, 0)-forms→ Ωp,0 ∂→ Ωp,1 ∂→ Ωp,2 ∂→ ...
∂→ Ωp,n → 0.

When is this exact?

1I got this wrong on the board; I fixed it here. DES


