
NOTES FOR 1-27

EMILY CLADER

We are headed toward an analogue of the Poincaré Lemma for the ∂ operator. Our eventual goal
is to prove that the sequence of sheaves

0→ Hol→ C∞
∂−→ Ω0,1 ∂−→ Ω0,2 → · · · → Ω0,n → 0

is exact, where Hol is the sheaf of holomorphic functions, C∞ is the sheaf of smooth (C-valued)
functions, and n is the dimension of the underlying complex manifold.

Dimension 1

Let us first examine this sequence in the 1-dimensional case. When the underlying manifold is
C, the claim is that

0→ Hol→ C∞
∂−→ Ω0,1 → 0

is exact. Clearly, Hol → C∞ is injective, and we observed last class that Hol is precisely the
kernel of the map ∂ : C∞ → Ω0,1, so the only difficulty in verifying exactness is in showing that
∂ : C∞ → Ω0,1 is surjective. That is, given a smooth function g : C→ C, we would like to produce
a smooth function f : C→ C with ∂f = g dz, or in other words,

∂

∂z
f = g.

Our first result in this direction will be the following:

Lemma. Let g : C→ C be smooth and compactly supported. Then there exists a smooth function
f : C→ C such that ∂f = g dz.

Before we prove this, let’s look non-rigorously at the “formal nonsense” that motivates it. Let
g = δ0 be the Dirac delta function; intuitively, g(z) = 0 for all z 6= 0, but g is “so infinite” at z = 0
that for any disk D ⊂ C, we have ∫

D
g dArea =

{
1 if 0 ∈ D
0 if 0 /∈ D.

Since

dz ∧ dz = (dx− idy) ∧ (dx+ idy) = 2i(dx ∧ dy) = (2i)dArea,

we can rewrite this as ∫
D
gdz ∧ dz =

{
2i if 0 ∈ D
0 if 0 /∈ D.

Suppose that we have found a smooth function f as in the statement of the lemma. Then

d(fdz) = df ∧ dz =

(
∂f

∂z
dz +

∂f

∂z
dz

)
∧ dz =

∂f

∂z
dz ∧ dz = gdz ∧ dz.

So, applying Stokes’s Theorem, one finds that for any disk D ⊂ C,∫
∂D

fdz =

∫
D
d(fdz) =

∫
D
gdz ∧ dz =

{
2i if 0 ∈ D
0 if 0 /∈ D.

On the other hand, the function f(z) = 1/(πz) has precisely these same integrals around disks.
So (still speaking non-rigorously), we can say that

1

π
∂

(
1

z

)
= δ0dz,

1
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or more generally,

1

π
∂

(
1

z − ζ

)
= δζdz

for any complex number ζ.
In an attempt to generalize this method to smooth functions other than Dirac delta functions,

observe that

g(z) =

∫
ζ∈C

g(ζ)δζ(z) dArea

for any smooth function g. The heuristic discussion above would thus suggest that the function

f(z) =

∫
ζ∈C

g(ζ)
1

π(z − ζ)
dArea

satisfies ∂f = g dz, proving the lemma. Of course, before we can check that f has this property, we
will need to verify that the integral in its definition is convergent, and that the resulting function
is smooth. Let us now do this rigorously.

Proof of Lemma. First, re-write the potential antiderivative f as

f(z) =
1

2πi

∫
ζ∈C

g(ζ)

z − ζ
dζ ∧ dζ.

Now, apply the change of variables η = z − ζ, which moves the pole of the integrand to the origin:

f(z) =
1

2πi

∫
η∈C

g(z − η)

η
dη ∧ dη.

We must check that this integral converges. Since g is compactly supported, there is no convergence
issue near∞, but only near the pole of the integrand at the origin. Thus, it suffices to integrate over
a small disk Dε of radius ε centered at the origin and verify that the resulting integral converges.
The fact that g is compactly supported implies that it is bounded, so g(z − η) = O(1), whereas
1
η = O

(
1
z

)
. So, switching to polar coordinates, we find that∫

η∈Dε

g(z − η)

η
dη ∧ dη =

∫ ε

0

∫ 2π

0
O(1/r)rdrdθ =

∫ ε

0
O(1)dr,

which is convergent.
This shows that f is a well-defined function; we must also show that it is smooth. Now, by

definition, an integral whose integrand has a pole at the origin is given by

f(z) =
1

2πi
lim
ε→0

∫
η∈C\Dε

g(z − η)

η
dη ∧ dη,

where Dε is a small ball of radius ε centered at the origin. The convergence of the integral is
uniform, so given any differential operator ∂

(∂x)k
∂

(∂y)`
, we can differentiate under the integral to give

∂

(∂x)k
∂

(∂y)`
f =

1

2πi
lim
ε→0

∫
C\Dε

∂
(∂x)k

∂
(∂y)k

g(z − η)

η
dη ∧ dη,

and the same argument as above shows that this integral converges, hence the derivative of f exists.
Finally, we will check that ∂

∂zf = g. Again differentiating under the integral, we have

∂

∂z
f = lim

ε→0

1

2πi

∫
C\Dε

∂g(z − η)/∂z

η
dη ∧ dη.
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Observe that

d

(
g(z − η)

η
dη

)
= ∂

(
g(z − η)

η
dη

)
+ ∂

(
g(z − η)

η
dη

)
=

∂

∂η

(
g(z − η)

η

)
dη ∧ dη +

∂

∂η

(
g(z − η)

η

)
dη ∧ dη

= 0 +
∂g(z − η)/∂η

η
dη ∧ dη

= −∂g(z − η)/∂z

η
∧ dη.

Thus, Stokes’s Theorem gives

1

2πi

∫
C\Dε

∂g(z − η)/∂z

η
dη ∧ dη = − 1

2πi

∫
C\Dε

d

(
g(z − η)

η
dη

)
=

1

2πi

∫
∂Dε

g(z − η)

η
dη,

where the reversal in sign is due to the fact that ∂Dε, as the boundary of C \ Dε, receives the
opposite of its standard orientation. Under the change of coordinates η = εeiθ, this becomes

1

2πi

∫ 2π

0

g(z − εeiθ)
εeiθ

iεeiθdθ =
1

2π

∫ 2π

0
g(z − εeiθ)dθ,

the “average value” of g on a circle of radius ε around z. In the limit as ε→ 0, this average value
approaches g(z) itself. Thus,

∂

∂z
f = lim

ε→0

1

2πi

∫
C\Dε

∂g(z − η)/∂z

η
dη ∧ dη = g,

as required. �

Eventually, we will get rid of the hypothesis that g is compactly supported. For now, we will
only relax it slightly:

Lemma. Let K ⊂ C, and let U be an open set containing K. Let g : U → C be a smooth function.
Then there exists an open set V with U ⊃ V ⊃ K and a smooth function f on V such that ∂f

∂z = g
on V .

Proof. Use a bump function; that is, find a smooth function θ and a set V lying between U and K
such that θ|V = 1 and θ|C\U = 0. Then g · θ is compactly supported and defined on all of C, so by

the previous lemma, there exists a smooth function f such that ∂f
∂z = gθ. In particular, ∂f

∂z = g on
V . �

The main important case of the above lemma is when K is a point. For recall, our initial objective
was to prove that ∂ : C∞ → Ω0,1 is surjective, which is to say that for any open set U and any
g dz ∈ Ω0,1(U), there exists an open cover {Ui} of U and smooth functions fi on Ui for which
∂fi = g dz on Ui. To construct such an open cover, apply the lemma to each point p ∈ U to obtain

an open set Vp ⊂ U containing p and a smooth function fp on Vp such that ∂fp =
∂fp
∂z dz = g dz on

Vp. Together, these Vp’s form the required open cover of U , so ∂ is indeed surjective.
Let us now turn to the multivariable case.

Higher Dimensions

In the single variable case, the key requirement in the Poincaré Lemma (and its analogue for ∂,
considered above) was contractibility of the domain. When we consider higher dimensions, however,
exactness of the sequence

0→ Hol→ C∞
∂−→ Ω0,1 ∂−→ Ω0.2 → · · · → Ω0,n → 0

will require a more subtle condition on the domain, one that is not even topological in nature. The
type of domain for which we will prove exactness is called a polydisk:
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Definition. Given positive real numbers (r1, . . . , rn) (some possibly equal to ∞), the polydisk
with radii (r1, . . . , rn) is

Br1,...,rn = {(z1, . . . , zn) ∈ Cn | |zi| < ri}.

Lemma. Let U be an open polydisk and let K be a compact polydisk in U . Let ω be a (p, q)-form
on U with ∂ω = 0. Then there exists an open polydisk V with K ⊂ V ⊂ U and a (p, q− 1)-form θ
on V such that ∂θ = ω on V .

Proof. First, we will reduce to the case p = 0. To do this, let ω be a (p, q)-form on U with ∂ω = 0,
and write

ω =
∑
I

ωI ∧ dzi1 ∧ . . . ∧ dzip ,

where each ωI is a (0, q)-form. Notice that

∂ω =
∑
I

(∂ωI)dzi1 ∧ . . . ∧ dzip ,

so ∂ω = 0 if and only if ∂ωI = 0 for all I. Assuming we have proved the p = 0 case, we can find θI
on smaller polydisks VI such that ∂θI = ωI . Shrinking to a polydisk V inside all of the VI ’s, define

θ =
∑
I

θIdzi1 ∧ . . . ∧ dzip

on V . Then ∂θ = ω on V , as required.
The proof of the p = 0 case is by induction on the largest index k such that dzk appears in ω.

In the base case, no dzk appears in ω and hence ω = 0, so we can take θ = 0. For the inductive
step, write

ω =
∑

1≤i1,...,iq≤k
fIdzi1 ∧ . . . ∧ dziq .

For any ` > k, the coefficient of dzi1 ∧ . . . ∧ dziq ∧ dz` in ∂ω is ∂fI
∂z`

. Thus, the assumption that

∂ω = 0 implies that for all multi-indices I and all ` > k, we have

∂fI
∂z`

= 0.

That is, each fI is holomorphic in the variables zk+1, . . . , zn.
By shrinking U if necessary, we may multiply by a bump function in one variable to ensure that

ω extends to a smooth (0, q)-form on

U1 × U2 × . . .× Uk−1 × C× Uk+1 × . . .× Un
which is supported on

U1 × U2 × . . .× Uk−1 ×K × Uk+1 × . . .× Un
with K compact. Define a (0, q − 1)-form α by

α =
∑
I | k∈I

(
1

2πi

∫
η∈C

fI(z1, . . . , zk−1, zk − η, zk+1, . . . , zn)

η
dη ∧ dη

)
dzi1 ∧ . . . d̂zik ∧ . . . ∧ dziq .

Notice that the ∂
∂zk

terms in ∂α exactly equal the fIdzi1 ∧ . . . ∧ ziq terms in ω with k ∈ I. On

the other hand, the ∂
∂z`

terms in ∂α for ` > k are all zero, as can be seen by differentiating inside

the integral and using the fact that ∂fI
∂z`

= 0 for all I and all ` > k. Thus,

ω − ∂α

contains only dzi terms for i < k. By induction, there exists a polydisk V between U and K and a
(0, q − 1)-form β on V such that ω − ∂α = ∂β. Hence

ω = ∂(α+ β)

on V , and we are done. �
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As in the single-variable case, taking K to be a point in the above lemma proves that the
Dolbeault complex

Ωp,0 ∂−→ Ωp,1 ∂−→ · · · ∂−→ Ωp,q → 0

is exact on Cn. In fact, since the entire argument was local, it follows that the Dolbeault complex
is exact on any complex manifold.

When p = 0, the kernel of ∂ : Ωp,0 → Ωp,1 consists precisely of the holomorphic functions. In
general, elements of the kernel of ∂ : Ωp,0 → Ωp,1 are called holomorphic (p, 0)-forms.

Definition. A (p, 0)-form
∑
fIdzi1 ∧ dzip is called holomorphic if each fI is a holomorphic func-

tion.

The holmorphic p-forms are precisely the kernel of Ωp,0 → Ωp,1.

Preview of What’s To Come

Notice that Ωp,q is a C∞ module, and C∞ has partitions of unity. Thus, for any complex manifold
X, we have

Hk(X,Ωp,q) = 0

for all k > 0. So the Dolbeault complex

Ωp,0 ∂−→ Ωp,1 ∂−→ · · · ∂−→ Ωp,q → 0

is a resolution of Ωp,0 by acyclic sheaves. This implies that, if Hp is the sheaf of holomorphic
(p, 0)-forms on X, then

Hq(X,Hp) =
ker(∂ : Ωp,q → Ωp,q+1)

im(∂ : Ωp,q−1 → Ωp,q)
.

We would like to apply a similar trick to the complex

0→ LCC → H0 ∂−→ H1 ∂−→ · · · ∂−→ Hn → 0,

but we will first need to know that this complex is exact. The proof is essentially the same as
previously, with ∂ in place of ∂. I’ll say more about this next time.

Another goal for the coming lectures is to know some cases in which Hk(X,Hp) = 0, or at least
to know what it is when it is nonzero. For example, we will show that

Hk(Cn,H0) = 0.

This amounts to showing that the complex

0→ H0(Cn)→ C∞(Cn)
∂−→ Ω0,1(Cn)

∂−→ · · · ∂−→ Ω0,n(Cn)→ 0

is exact. Notice that this does not follow from what we have already done, since we allowed ourselves
to shrink the domain when constructing a ∂-antiderivative of a (p, q)-form. In order to construct
global ∂-antiderivatives, we will need to get rid of the compactly-supported hypothesis in all of
today’s results.

To summarize the concern, suppose that we are given a smooth function g on C and we want to
find a smooth function f such that ∂f/∂z = g. We can do this when g is compactly-supported, so
restricting g to concentric disks about the origin gives a function f on each disk with ∂f/∂z = g.
But there is no guarantee that these functions are compatible; in fact, we might have made a
particularly stupid choice of antiderivative f on some disk, such that f cannot be extended to an
antiderivative on a larger disk. For example, if g = 0, we are trying to show that there is an entire
holomorphic function. Of course, there are plenty of them, but there are also holomorphic function
on discs which don’t extend to global holomorphic functions. We will need to be more careful when
choosing antiderivatives if they are to stand a chance of fitting together into a global antiderivative.


