
NOTES FOR JANUARY 6

DAVID SPEYER

1. Course organization

The course website, http://www.math.lsa.umich.edu/∼speyer/632/632.html, has informa-
tion about contacting Prof. Speyer, office hours, etcetera.

There will be two tasks for those enrolled in the course: There will be weekly problem sets,
distributed on Tuesdays in class and due on the following Tuesday. You may collaborate on solving
problems, but must write them up alone, in your own words.

The second responsibility is to take turns providing TEX’ed notes for the class, as I have done
here. There is a template on the course webpage to get you started, and I can help you if you
haven’t used TEX before. There will be an e-mail sent soon to arrange scribes for the first month.

There are a lot of people attending this class who are not enrolled. If you are one of them, e-mail
me and I’ll add you to the course e-mail list.

The textbook is Hodge Theory and Algebraic Geometry I, by Claire Voisin.

2. About the course

I grew up as an algebraic algebraic geometer, reading books by authors like Fulton, Eisenbud and
Harris, and Hartshorne. In the last several years, I have been trying to learn the complex analytic
perspective on algebraic geometry: How to study complex varieties using smooth functions and
their derivatives, and how to use this sort of data to extract topological data. This course is my
attempt to present that perspective.

I expect people to have background in three fields, but the amount I need from each is small.
The first is complex analysis. You should know:

• What an analytic (also known as holomorphic) function is.
• The relation between analytic functions and convergent power series.
• How to compute integrals of analytic functions using residues.

The second is smooth manifolds. You should know:

• What a manifold is.
• What a smooth manifold is.
• What a tangent vector, and a tangent vector field are.
• What a differential form is. I’ll review this on Tuesday, but I’ll probably go way too fast

for someone who hasn’t seen this before.

The third is algebraic topology, by which I basically mean cohomology. (There may be some π1
in this course, there will not be any higher homotopy groups.) I asked a senior faculty member
what students learn about cohomology in the standard course here. I was told “They’ve learned
what cohomology is, but they’ve forgotten it.”

So, let me remind you of a few notions. What I want is that, as I bring these subjects up, you
remember them.

Let A0 → A1 → A2 → · · · be a sequence of abelian groups, and maps between them. It is called
a complex if, for every k, the composition Ak → Ak+1 → Ak+2 is 0. So, for any complex, the
image of Ak−1 → Ak is contained in the kernel of Ak → Ak+1. The complex is called exact if, for
every k, the image is equal to the kernel. The failure of exactness is measure by cohomology: The
k-th cohomology group Hk(A•) is the quotient Ker(Ak → Ak+1)/ Im(Ak−1 → Ak).

If X is a topological space, there is a complex C•(X) called the cochain complex of X. Its
cohomology H•(X) is a topological (in fact, homotopy) invariant of X. I want you to have a basic
memory of this construction, and have seen its basic properties.
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3. Cohomology from many perspectives

As a preview of this year’s subject matter, I will discuss the cohomology of the circle from many
perspectives. The circle, S1, is of course the topological space obtained by taking an interval [0, 1]
and identifying the endpoints; we can also construct it as the set of (x, y) ∈ R2 such that x2+y2 = 1.

3.1. Triangulate S1. For example, we can make it into a quadrilateral:

We then have a cochain complex, where the first space is functions on vertices and the second
is functions on edges. Given a function φ on the vertices, and given an edge e between vertices u
and v, we have (dφ)(e) = φ(u)− φ(v). Explicitly, the cochain complex is

Z4

 1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1


−→ Z4.

This is a complex: All but one map is zero, so the condition that composing any two maps is 0
is trivially obeyed. We want to compute the kernel and the cokernel of this map.

Clearly, a function on vertices is in the kernel if and only if it is constant. So

H0(S1) = {constant functions} ∼= Z.

To compute H1, note the characteristic function of one edge is equivalent to the characteristic
function of any other in the cokernel. So H1(S1) is spanned by the class of any edge and

H1(S1) ∼= Z.

Comment not made in class: Given a function ψ on edges, its class inH1(S1) is
∑

e∈Edges ψ(e).

This sum will become an integral in other theories of cohomology.

3.2. In singular cohomology, we form an infinite cochain complex. The zeroeth term is all functions
from S1 to Z: no measurability, no continuity, just all functions whatsoever! The first term is even
worse: All Z-valued functions on the set of all continuous maps from [0, 1] to S1. I used to think
topology was really hard, because topologists spent all their time thinking about sets of such large
size. We won’t see much of this construction.

Correction to class: I accidently implied that the singular cochain complex stops after the C1

term. That, of course, is not true. You also have to consider Z-valued functions from the set of
all continuous maps from the triangle to S1, and Z-valued functions from the set of all continuous
maps from the tetrahedron to S1, and so forth.

3.3. In the de Rham approach to cohomology, we again consider a complex with 2 terms. The
first one is smooth functions from S1 to R, which we denote C∞(S1). The second space, properly
speaking, is Ω1(S1), the space of smooth 1-forms on S1. Since I won’t be reviewing 1-forms
until tomorrow, those of you who aren’t comfortable with them can just use the isomorphism
Ω1(S1) ∼= C∞(S1). Our map sends the function f to the 1-form df or, more explicitly, sends f(θ)
to ∂f/∂θ dθ. If you don’t know what dθ means, ignore it.

Again, we want to compute the kernel and cokernel of this map. A function whose derivative is
0 is a constant. So

H0
DR(S1) = {constant functions S1 → R } ∼= R.

What about the cokernel? Given g : S1 → R, we want to know whether there exists a function
f with f ′ = g. The way to find such a function is to integrate: We try setting

g(θ) =

∫ θ

0
f(τ)dτ.

But this might have a jump discontinuity at 0. We only get a smooth f if
∫ 2π
0 f(τ)dτ = 0.

So the image of d is functions with integral 0, and

H1
DR(S1) = {functions S1 → R}/{such functions with

∫
= 0} ∼= R.

Given a function g, its class in H1 is
∫
g.
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3.4. For our next examples, we switch targets from S1 to R2 \ {(0, 0)}. These two spaces are
deformation retracts of each other, so they should have the same cohomology. I’ll call this space T .

Triangulating a noncompact space is a slightly subtle notion, so I’ll cheat and triangulate the
closed annulus instead.

We now have three nontrivial terms in our cochain complex – functions on vertices, functions on
edges and functions on triangles.

Z8 → Z16 → Z8.

I won’t write out the boundary maps but, if you do so, you should get that H0(T ) ∼= Z, H1(T ) ∼= Z
and H2(T ) ∼= 0.

3.5. Let’s redo the de Rham computation, working on the punctured plane this time. We now have
three spaces: Ω0(T ) = C∞(T ), Ω1(T ) and Ω2(T ). These are isomorphic to C∞(T )⊕2 and C∞(T ).

Our maps are

C∞(T )
d−→ C∞(T )2

d−→ C∞(T )
f(x, y) 7→ (∂f/∂x, ∂f/∂y)

(f(x, y), g(x, y)) 7→ ∂f/∂y − ∂g/∂x
Those of you who with a background in physics might call these maps “grad” and “curl”. Observe

that f(x, y) 7→ (∂f/∂x, ∂f/∂y) 7→ ∂2f/(∂y∂x)− ∂2f/(∂x∂y) = 0, so this is a complex.
So, H0 is the functions with gradient 0. This is the constant functions. (More precisely, the

locally constant functions, but T is connected.)
I leave H2 as an exercise. The answer is that every function on T is a curl; so H2 = 0.
The interesting question is H1. Given a vector field v (more precisely, a 1-form, but I’ll use the

lower level terminology for now) with ∇× v = 0, we want to know whether v = ∇g.
We can try to build g by integrating v. Say

g(x, y) =

∫ (x,y)

(1,0)
v

along some path γ. The trouble is that this integral might depend on γ.
Now, because ∇ × v = 0, moving γ by a homotopy can’t change the integral. But two paths

which go around the origin in different ways might have genuinely different integrals. In other
words, the obstruction to v being a gradient is if

∮
v 6= 0, where

∮
is taken around the origin. So

H1
DR(T ) = {vector fields v with ∇× v = 0}/{vector fields v with ∇× v = 0 and

∮
v = 0}.

This quotient is R, with the map sending a vector field v to
∮
v.

3.6. The space T is isomorphic to C \ {0}. I’ll call it C∗ when I’m thinking of it this way.
Let’s try setting up de Rham cohomology again, but using only analytic functions. So the terms

in our cochain complex are {analytic functions on C∗} and {holomorphic (1, 0) forms on C∗}. Since
I don’t expect you to know what (1, 0) forms are, it is fortunate that the second term is isomorphic
to {analytic functions on C∗}. Our differential map sends an analytic function f(z) to the analytic
function (∂f/∂z).

Once again, a function whose derivative is zero is a constant. So H0 is constant functions and
we get H0(C∗) = C.

For H1, we have g(z), an analytic function on C∗, and we want to know whether there is some
f such that ∂f/∂z = g. Just like in the case of de Rham cohomology for the punctured plane, we
would like to take f(z) =

∫ z
1 g(w)dw, but we have to worry about what path to take the integral

along. Since g is analytic, only the homotopy class of the path matters.
So, once again, we need to worry about whether

∮
g(w)dw vanishes. We see that the image of d

is analytic functions on C∗ with residue 0. So H1(C∗) = C.
Correction of what I said in class: For some reason, I referred to this as the Dolbeault

cohomology of C∗. The Dolbeault cohomology is what you get when you map smooth C-valued
functions to smooth C-valued (0, 1) forms by the ∂ map, which we will define soon. In this case,
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H1
Dolbeault(C∗) = 0, as we will prove in a few weeks. This fact is important, and is an important

lemma when relating the computations I am doing here to topological cohomology, but it is very
untrue that Dolbeault cohomology equals topological cohomology. All my mathematical statements
were right, but for some reason the wrong term came to mind.

The general result is that, if X is a smooth affine complex variety of complex dimension d, then
Hk(X) vanishes for k > d, and can be computed by writing down the de Rham complex using
analytic forms. We will be proving this (modulo some things I may have to gloss over).

In fact, X is homotopic to a CW complex of dimension d.
A nice example, for those of you who have seen elliptic curves before, is an elliptic curve with

one point removed. This is homotopic to a wedge of two circles, so the homology groups should be
H0 = C, H1 = C2 and H2 = 0. If you know how to work with elliptic functions, you should be able
to check that this is what you get if you write down the de Rham complex for analytic functions,
as I did above.

For projective varieties, it is not true that cohomology vanishes above degree d. But it is true
that there is a way to extract the cohomology from purely topological data. We will discuss this,
in fact, it is our main topic.

3.7. Finally, let me present one more variant. Instead of working with all analytic functions on C∗,
let’s just work with polynomials. So the zero-eth term in our cochain complex will be C[z, z−1],
and we map C[z, z−1] to itself by taking derivatives.

Things work out exactly the same. A polynomial has derivative 0 if and only if it is a constant.
A Laurent polynomial is a derivative of a Laurent polynomial if and only the coefficient of z−1 is
zero. So, once again, H0(C∗) and H1(C∗) are each C.

This is an example of Serre’s GAGA (Géometrie Algébrique et Géométrie Analytique) principle:
Algebraic and complex analytic computations give the same answers, when you ask the right
questions. I hope to return to this before the end of the course.

This formulation of cohomology, and the original one in terms of triangulations, are by far the
best suited to automatic computation. And there are many spaces where it is reasonable to compute
the algebraic de Rham cohomology in this fashion, but it is insane to attempt to triangulate them.
For example, take C3 and remove the union of 6 complex hyperplanes.

4. Overview of the course

This lecture was an overview of the cohomology theories we will be talking about:

• Topological (also known as Betti) cohomology, usually described in terms of triangulations
• De Rham cohomology, using smooth functions
• Analytic de Rham cohomology1, using analytic functions
• Algebraic de Rham cohomology, using polynomials

We will spend the next few weeks talking about the relation of the first two. We will spend most
of the course talking about the relation of the second and third. I hope to say a bit about the last.

5. One final, unplanned, remark

Suppose you were a number theorist, so you thought about SpecQ[z, z−1] instead of C∗. Then it
would be natural to compute algebraic de Rham cohomology with rational coefficients. You would
get that H1 = Q, with basis dz/z.

On the other hand, if you were a topologist, you could also consider topology with Q coefficients,
working from a triangulation. Again, H1 = Q, with obvious basis the class of a single edge in the
triangulation.

The ratio of these two basis elements, if you get them to live in the same space, is
∮
dz/z = 2πi.

This is the first example of what is called a period , a number which comes up when you try to
relate topological cohomology to algebraic de Rham with rational coefficients. The fact that periods
are often transcendental indicates that this isomorphism must be very mysterious.

1I’m not sure if this is the standard name


