NOTES FOR MARCH 10

ADAM KAYE

This material coincides with chapter 5 in Voisin's book. Last time we looked at X a smooth manifold with positive definite symmetric bilinear form on T_*X and defined

$$
\ast : \Omega^k \to \Omega^{n-k} \text{ (a map of vector bundles)}
$$

$$
d^* : \Omega^k \to \Omega^{k-1}
$$

$$
\Delta_d = dd^* + d^*d.
$$

If X was compact, we also defined a positive definite symmetric form (,) : Ω^k × $\Omega^k \to \mathbb{R}$ such that d and d^{*} are adjoint. We also stated the Hodge theorem:

Theorem (Hodge).

$$
\ker(\Delta_d : \Omega^k \to \Omega^k) \cong H^k_{DR}(X)
$$

Now let X be a complex *n*-fold (real dimension $2n$), with a positive definite symmetric form on T_*X such that $g(u, v) = g(Ju, Jv)$. (By partitions of unity, such a g always exists). We can then define $*, d^*,$ and Δ_d as before. E.g. take $X = \mathbb{C}$ with coordinates x and y and the standard inner product. Then $* : dx \mapsto dy$ and $dy \mapsto -dx$. Extend * and d* to be C-linear (that is to say, they act on real and imaginary parts separately) we have $*(dx + idy) = dy - idx = (-i)(dx + idy)$. In other words, $*: dz \mapsto (-i)dz$. In general we have $*: \Omega^{p,q} \to \Omega^{n-q,n-p}$.

Recall that $d = \partial + \overline{\partial}, d^* = - * d^*$ (even dimension). We also define $\partial^* = - * \overline{\partial} *$ and $\bar{\partial}^* = -\ast \partial \ast$, so that $\partial^* \partial : \Omega^{p,q} \to \Omega^{p,q}$ and similarly for $\partial \partial^* , \bar{\partial}^* \bar{\partial} , \bar{\partial} \bar{\partial}^*$ (see Figure 1).

Now say X is compact. We'll put a positive definite Hermitian form on $\Omega^{p,q}(X)$. This is defined by

$$
(\alpha, \beta) = \int_X \alpha \wedge \overline{\ast \beta}.
$$

I can use this formula to put a Hermitian inner product on all of $\Omega^k(X)$, but it just decomposes into a sum of these as the inner product between forms of different type is 0. If α, β are real k-forms then this is just the old (,). We know that $\partial + \partial$ is adjoint to $\partial^* + \bar{\partial}^*$. In fact $(\partial \alpha, \beta) = (\alpha, \partial^* \beta)$, and $(\bar{\partial} \alpha, \beta) = (\alpha, \bar{\partial}^* \beta)$. We can also define

$$
\Delta_{\partial} = \partial \partial^* + \partial^* \partial \text{ and } \Delta_{\bar{\partial}} \bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}.
$$

Note $\Delta_d = (\partial + \bar{\partial})(\partial^* + \bar{\partial}^*) + (\partial^* + \bar{\partial}^*)(\partial + \bar{\partial}) = \Delta_{\partial} + \Delta_{\bar{\partial}} + \bar{\partial}\partial^* + \cdots$

We now generalize the above ideas to holomorphic vector bundles. (So the earlier material is the case where E is trivial.)

Let $E \to X$ be a $\mathbb C$ vector bundle with a positive definite Hermitian form. We have one pairing

$$
(E \otimes \Omega^{p,q}) \times (E \otimes \Omega^{p,q}) \to \underline{\mathbb{C}}
$$

which is sesquilinear. This is $\langle \sigma \otimes \omega, \tau \otimes \eta \rangle = \langle \sigma, \tau \rangle \langle \omega, \eta \rangle$. We also have

$$
(E \otimes \Omega^{p,q}) \times (E^* \otimes \Omega^{n-p,n-q}) \to \Omega^{n,n} \cong \underline{\mathbb{C}}
$$

FIGURE 1. Our various maps in the Hodge diamond

We get the trivialization of $\Omega^{n,n}$ by using the inner product to get a volume form up to sign and using the complex structure to get an orientation.

As in the previous lecture, given two perfect pairings, there is a linear map making them coincide. This map is $*_E : E \otimes \Omega^{p,q} \to E^* \otimes \Omega^{n-p,n-q}$ and it is C-antilinear. If $E = \mathbb{C}$ with the standard Hermitian form then $*_E = \overline{*}$.

Remark: On the trivial vector bundle, we have ∗, which is C-linear, and we have complex conjugation. (A k -form eats k vectors and spits out a complex number; its complex conjugate eats the same k vectors and spits out the complex conjugate number.) On a general vector bundle, we don't have a notion of complex conjugate, nor of \ast , only their composition \ast_E .

If E is holomorphic then it comes with a natural $\bar{\partial}$ -connection. $\bar{\partial}: E \otimes \Omega^{p,q} \to$ $E \otimes \Omega^{p,q+1}$. We also define $\bar{\partial}_E^* = (-1)^q *^{-1} \bar{\partial}_{E^* \otimes K^*}$ where K is $\Omega^{n,0}$ considered as a holomorphic vector bundle. In other words, $\bar{\partial}_{E}^*$ is

$$
E \otimes \Omega^{0,q} \stackrel{*E}{\to} E^* \otimes \Omega^{n,n-q} = E^* \otimes \Omega^{n,0} \otimes \Omega^{0,n-q} = (E^* \otimes K) \otimes \Omega^{0,n-q}
$$

$$
\stackrel{\bar{\partial}_{E^* \otimes K}}{\to} (E^* \otimes K) \otimes \Omega^{0,n-q+1} \to \cdots \stackrel{*^{-1}}{\to} E \otimes \Omega^{0,q-1}
$$

where K is the canonical bundle. Similarly, we have maps $\bar{\partial}: E \otimes \Omega^{p,q} \to E \otimes \Omega^{p,q-1}$.

If X is compact, we get a Hermitian positive definite inner product on $E \otimes$ $\Omega^{p,q}(X)$ with $\bar{\partial}_E$ and $\bar{\partial}_E^*$ adjoint. As before, $\Delta_E = \bar{\partial}_E \bar{\partial}_E^* + \bar{\partial}_E^* \bar{\partial}_E$.

Theorem.

$$
\ker(\Delta_E : (E \otimes \Omega^{p,q})(X) \to (E \otimes \Omega^{p,q})(X))
$$

$$
\cong \frac{\overline{\partial} - closed \ (E \otimes \Omega^{p,q})(X)}{\overline{\partial} - exact \ (E \otimes \Omega^{p,q})(X)} \cong H^q(X, \text{Hol}(E) \otimes \mathcal{H}^p).
$$

Furthermore, these vector spaces are finite dimensional.

The proof is analogous to the proof of the Hodge theorem. Roughly speaking, one studies the eigenspaces of Δ_E , but the analytic details are again very subtle. There is no simple proof known of the finite dimensionality of $H^q(X, Hol(E)).$

POINCARÉ AND SERRE DUALITY

We return to the world of smooth manifolds. Let X be a compact, smooth, oriented *n*-fold. Define a pairing $\Omega^k(X) \times \Omega^{n-k}(X) \to \mathbb{R}$ by $(\alpha, \beta) \mapsto \int_X \alpha \wedge \beta$. If α is closed and we change β to $\beta + d\gamma$ then

$$
\int \alpha \wedge (\beta + d\gamma) = \int \alpha \wedge \beta + \int \alpha \wedge d\gamma = \int \alpha \wedge \beta + \int d(\alpha \wedge \gamma) = \int \alpha \wedge \beta
$$

so we get a pairing $H_{DR}^k(X) \times H_{DR}^k(X) \to \mathbb{R}$.

Theorem (Poincaré duality). This paring is perfect.

Proof. Given $\alpha \in H_{DR}^k$ nonzero, we want $\beta \in H_{DR}^{n-k}$ such that $\int \alpha \wedge \beta \neq 0$. Choose a metric on X. Lift α to $\tilde{\alpha}$ in ker Δ . Then $d\tilde{\alpha} = 0$ and $d^*\tilde{\alpha} = 0$. So $d(*\tilde{\alpha}) = \pm * d^*\tilde{\alpha} = 0$ so $*\tilde{\alpha}$ is d-closed. And $\int \tilde{\alpha} \wedge (*\tilde{\alpha}) > 0$ (the inequality is strict because $\alpha \neq 0$ means $\tilde{\alpha} \neq 0$).

An extremely similar proof does Serre duality. Let E be a holomorphic vector bundle over complex compact n -fold X .

Theorem (Serre duality). $H^q(X, Hol(E))$ and $H^{n-q}(X, K \otimes Hol(E))$ are dual.

The way the pairing goes is, given α a $\bar{\partial}$ -closed $(0, q)$ -form valued in E, and $β$ a $\bar{∂}$ -closed $(0, n - q)$ -form valued in $E^* \otimes K$, we wedge them and pair together $E \otimes E^*$ to get $\alpha \wedge \beta$, a $(0, n)$ form valued in K or, in otherwords, an (n, n) -form. Our pairing then sends (α, β) to $\int_X \alpha \wedge \beta$. Note that this pairing is C-linear.

The analogous theorem in the algebraic setting is that $Hⁿ(X, K) \cong \mathbb{C}$ canonically and

$$
H^q(X, E) \times H^{n-q}(X, E^* \otimes K) \to H^n(X, K) \cong \mathbb{C}
$$

is a C-linear perfect pairing. The isomorphism $Hⁿ(X, K) \cong \mathbb{C}$ is rather subtle when you have no analytic tools.

Proof. Given $\alpha \in H^q(X, Hol(E))$ we can lift to $\tilde{\alpha} \in (E \otimes \Omega^{0,q})(X)$ which is in ker Δ_E . As before,

$$
(\tilde{\alpha}, \Delta_E \tilde{\alpha}) = (\bar{\partial}_E \tilde{\alpha}, \bar{\partial}_E \tilde{\alpha}) + (\bar{\partial}_E^* \tilde{\alpha}, \bar{\partial}_E^* \tilde{\alpha})
$$

so $\bar{\partial}_E \tilde{\alpha} = \bar{\partial}_E^* \tilde{\alpha} = 0$. Let $\beta = *_E \tilde{\alpha} \in (E^* \otimes K \otimes \Omega^{0,n-q})(X)$. Then $\bar{\partial}_K \otimes E^* \beta =$ $\pm * \overline{\partial}_E^* \tilde{\alpha} = 0.$ So $*\tilde{\alpha}$ gives a class in $H^{n-q}(X, K \otimes E^*)$ and $\int \tilde{\alpha} \wedge * \tilde{\alpha} > 0.$

Remark: We used a \mathbb{C} -antilinear map, namely $*_E$, to prove a \mathbb{C} -linear duality.

A very brief example of the Hodge theorem

On \mathbb{R}^2 with the ordinary metric, everything real, we have

$$
f \stackrel{d}{\mapsto} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \stackrel{*}{\mapsto} -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy
$$

$$
\stackrel{d}{\mapsto} \frac{\partial^2 f}{\partial y^2} dx \wedge dy + \frac{\partial^2 f}{\partial x^2} dx \wedge dy \stackrel{*}{\mapsto} -\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right).
$$

4 ADAM KAYE

Let's look at the torus $T = \mathbb{R}^2/\mathbb{Z}^2$, with the quotient metric. The eigenfunctions of Δ look like $\cos(2\pi ax)\cos(2\pi bx)$, and likewise with one or both cosines replaced by a sine. So the eigenvalues of Δ_d are $(4\pi^2)(a^2 + b^2)$.

We see that this is, indeed, a discrete sequence of nonnegative reals. In particular, $Ker\Delta$ is 1-dimensional, spanned by 1 (corresponding to $(a, b) = (0, 0)$). This is because T is connected.

Similarly, the eigenforms of Δ on 1-forms look like $\cos(2\pi ax)\cos(2\pi bx)dx$ and $\cos(2\pi ax)\cos(2\pi bx)dy$. The kernel of Δ is spanned by dx and dy, verifying that $H¹(T)$ is 2-dimensional. On 2-forms, the kernel of Δ is spanned by $dx \wedge dy$.

This is the only easy case of the Hodge theorem. The sphere $Sⁿ$ and projective space $\mathbb{C}\mathbb{P}^n$ can be done by hand if you work hard enough. In basically every other case, the eigenfunctions/eigenforms are beyond the limits of reasonable computation.