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ADAM KAYE

This material coincides with chapter 5 in Voisin’s book. Last time we looked at
X a smooth manifold with positive definite symmetric bilinear form on T∗X and
defined

∗ : Ωk → Ωn−k (a map of vector bundles)

d∗ : Ωk → Ωk−1

∆d = dd∗ + d∗d.

If X was compact, we also defined a positive definite symmetric form (, ) : Ωk ×
Ωk → R such that d and d∗ are adjoint. We also stated the Hodge theorem:

Theorem (Hodge).

ker(∆d : Ωk → Ωk) ∼= Hk
DR(X)

Now let X be a complex n-fold (real dimension 2n), with a positive definite
symmetric form on T∗X such that g(u, v) = g(Ju, Jv). (By partitions of unity, such
a g always exists). We can then define ∗, d∗, and ∆d as before. E.g. take X = C
with coordinates x and y and the standard inner product. Then ∗ : dx 7→ dy and
dy 7→ −dx. Extend ∗ and d∗ to be C-linear (that is to say, they act on real and
imaginary parts separately) we have ∗(dx + idy) = dy − idx = (−i)(dx + idy). In
other words, ∗ : dz 7→ (−i)dz. In general we have ∗ : Ωp,q → Ωn−q,n−p.

Recall that d = ∂+ ∂̄, d∗ = −∗ d∗ (even dimension). We also define ∂∗ = −∗ ∂̄∗
and ∂̄∗ = − ∗ ∂∗, so that ∂∗∂ : Ωp,q → Ωp,q and similarly for ∂∂∗, ∂̄∗∂̄, ∂̄∂̄∗ (see
Figure 1).

Now say X is compact. We’ll put a positive definite Hermitian form on Ωp,q(X).
This is defined by

(α, β) =

∫
X

α ∧ ∗β.

I can use this formula to put a Hermitian inner product on all of Ωk(X), but it
just decomposes into a sum of these as the inner product between forms of different
type is 0. If α, β are real k-forms then this is just the old (, ). We know that ∂ + ∂̄
is adjoint to ∂∗ + ∂̄∗. In fact (∂α, β) = (α, ∂∗β), and (∂̄α, β) = (α, ∂̄∗β). We can
also define

∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ ∂̄∂̄
∗ + ∂̄∗∂̄.

Note ∆d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄) = ∆∂ + ∆∂̄ + ∂̄∂∗ + · · · .
We now generalize the above ideas to holomorphic vector bundles. (So the earlier

material is the case where E is trivial.)
Let E → X be a C vector bundle with a positive definite Hermitian form. We

have one pairing
(E ⊗ Ωp,q)× (E ⊗ Ωp,q)→ C

which is sesquilinear. This is 〈σ ⊗ ω, τ ⊗ η〉 = 〈σ, τ〉〈ω, η〉. We also have

(E ⊗ Ωp,q)× (E∗ ⊗ Ωn−p,n−q)→ Ωn,n ∼= C
1
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Figure 1. Our various maps in the Hodge diamond

We get the trivialization of Ωn,n by using the inner product to get a volume form
up to sign and using the complex structure to get an orientation.

As in the previous lecture, given two perfect pairings, there is a linear map
making them coincide. This map is ∗E : E ⊗ Ωp,q → E∗ ⊗ Ωn−p,n−q and it is
C-antilinear. If E = C with the standard Hermitian form then ∗E = ∗̄.

Remark: On the trivial vector bundle, we have ∗, which is C-linear, and we have
complex conjugation. (A k-form eats k vectors and spits out a complex number;
its complex conjugate eats the same k vectors and spits out the complex conjugate
number.) On a general vector bundle, we don’t have a notion of complex conjugate,
nor of ∗, only their composition ∗E .

If E is holomorphic then it comes with a natural ∂̄-connection. ∂̄ : E ⊗ Ωp,q →
E ⊗Ωp,q+1. We also define ∂̄∗E = (−1)q ∗−1 ∂̄E∗⊗K∗ where K is Ωn,0 considered as
a holomorphic vector bundle. In other words, ∂̄∗E is

E ⊗ Ω0,q ∗E→ E∗ ⊗ Ωn,n−q = E∗ ⊗ Ωn,0 ⊗ Ω0,n−q = (E∗ ⊗K)⊗ Ω0,n−q

∂̄E∗⊗K→ (E∗ ⊗K)⊗ Ω0,n−q+1 → · · · ∗
−1

→ E ⊗ Ω0,q−1

where K is the canonical bundle. Similarly, we have maps ∂̄ : E⊗Ωp,q → E⊗Ωp,q−1.
If X is compact, we get a Hermitian positive definite inner product on E ⊗

Ωp,q(X) with ∂̄E and ∂̄∗E adjoint. As before, ∆E = ∂̄E ∂̄
∗
E + ∂̄∗E ∂̄E .

Theorem.

ker(∆E : (E ⊗ Ωp,q)(X)→ (E ⊗ Ωp,q)(X))

∼=
∂̄ − closed (E ⊗ Ωp,q)(X)

∂̄ − exact (E ⊗ Ωp,q)(X)
∼= Hq(X,Hol(E)⊗Hp).

Furthermore, these vector spaces are finite dimensional.
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The proof is analogous to the proof of the Hodge theorem. Roughly speaking,
one studies the eigenspaces of ∆E , but the analytic details are again very subtle.
There is no simple proof known of the finite dimensionality of Hq(X,Hol(E)).

Poincaré and Serre Duality

We return to the world of smooth manifolds. Let X be a compact, smooth,
oriented n-fold. Define a pairing Ωk(X)× Ωn−k(X)→ R by (α, β) 7→

∫
X
α ∧ β. If

α is closed and we change β to β + dγ then∫
α ∧ (β + dγ) =

∫
α ∧ β +

∫
α ∧ dγ =

∫
α ∧ β +

∫
d(α ∧ γ) =

∫
α ∧ β

so we get a pairing Hk
DR(X)×Hk

DR(X)→ R.

Theorem (Poincaré duality). This paring is perfect.

Proof. Given α ∈ Hk
DR nonzero, we want β ∈ Hn−k

DR such that
∫
α ∧ β 6= 0.

Choose a metric on X. Lift α to α̃ in ker ∆. Then dα̃ = 0 and d∗α̃ = 0. So
d(∗α̃) = ± ∗ d∗α̃ = 0 so ∗α̃ is d-closed. And

∫
α̃ ∧ (∗α̃) > 0 (the inequality is strict

because α 6= 0 means α̃ 6= 0). �

An extremely similar proof does Serre duality. Let E be a holomorphic vector
bundle over complex compact n-fold X.

Theorem (Serre duality). Hq(X,Hol(E)) and Hn−q(X,K ⊗Hol(E)) are dual.

The way the pairing goes is, given α a ∂̄-closed (0, q)-form valued in E, and
β a ∂̄-closed (0, n − q)-form valued in E∗ ⊗K, we wedge them and pair together
E ⊗ E∗ to get α ∧ β, a (0, n) form valued in K or, in otherwords, an (n, n)-form.
Our pairing then sends (α, β) to

∫
X
α ∧ β. Note that this pairing is C-linear.

The analogous theorem in the algebraic setting is thatHn(X,K) ∼= C canonically
and

Hq(X,E)×Hn−q(X,E∗ ⊗K)→ Hn(X,K) ∼= C
is a C-linear perfect pairing. The isomorphism Hn(X,K) ∼= C is rather subtle when
you have no analytic tools.

Proof. Given α ∈ Hq(X,Hol(E)) we can lift to α̃ ∈ (E ⊗ Ω0,q)(X) which is in
ker ∆E . As before,

(α̃,∆Eα̃) = (∂̄Eα̃, ∂̄Eα̃) + (∂̄∗Eα̃, ∂̄
∗
Eα̃)

so ∂̄Eα̃ = ∂̄∗Eα̃ = 0. Let β = ∗Eα̃ ∈ (E∗ ⊗ K ⊗ Ω0,n−q)(X). Then ∂̄K ⊗ E∗β =
± ∗ ∂̄∗Eα̃ = 0. So ∗α̃ gives a class in Hn−q(X,K ⊗ E∗) and

∫
α̃ ∧ ∗α̃ > 0. �

Remark: We used a C-antilinear map, namely ∗E , to prove a C-linear duality.

A very brief example of the Hodge theorem

On R2 with the ordinary metric, everything real, we have

f
d7→ ∂f

∂x
dx+

∂f

∂y
dy

∗7→ −∂f
∂y
dx+

∂f

∂x
dy

d7→ ∂2f

∂y2
dx ∧ dy +

∂2f

∂x2
dx ∧ dy ∗−1

7→ −
(
∂2f

∂x2
+
∂2f

∂y2

)
.
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Let’s look at the torus T = R2/Z2, with the quotient metric. The eigenfunctions
of ∆ look like cos(2πax) cos(2πbx), and likewise with one or both cosines replaced
by a sine. So the eigenvalues of ∆d are (4π2)(a2 + b2).

We see that this is, indeed, a discrete sequence of nonnegative reals. In particular,
Ker∆ is 1-dimensional, spanned by 1 (corresponding to (a, b) = (0, 0)). This is
because T is connected.

Similarly, the eigenforms of ∆ on 1-forms look like cos(2πax) cos(2πbx)dx and
cos(2πax) cos(2πbx)dy. The kernel of ∆ is spanned by dx and dy, verifying that
H1(T ) is 2-dimensional. On 2-forms, the kernel of ∆ is spanned by dx ∧ dy.

This is the only easy case of the Hodge theorem. The sphere Sn and projective
space CPn can be done by hand if you work hard enough. In basically every other
case, the eigenfunctions/eigenforms are beyond the limits of reasonable computa-
tion.


