
NOTES FOR MARCH 22

E. HUNTER BROOKS

1. The Hodge Decomposition

Recall that for X a (possibly non-compact) Kähler manifold of (complex) dimension n, we have
a bunch of operators:

L, Λ, ∂, ∂, ∂∗, ∂
∗
, ∗, ∆d, ∆∂ , and ∆∂ .

The first four and the ∗ are the most important, in that the others are built out of them. We are
going to try to shove ∗ under the rug and express all operators in terms of the first four operators.

Last time, we proved Kähler identities:

[Λ, ∂] = −i∂∗ and [Λ, ∂] = i∂
∗
.

These let us write ∂∗ and ∂
∗

in terms of L, Λ, ∂ and ∂.
As a consequence, we saw that

∆∂ = ∆∂ =
1

2
∆d.

Recall that a form η ∈ Ωk is called “harmonic” if ∆dη = 0; as X is Kähler, this is equivalent to
saying that ∆∂η = 0 or to saying that ∆∂η = 0. Let α ∈ Ωk be

∑
p+q=k α

pq where αpq ∈ Ωp,q(X).
As

∆∂ = ∂∂∗ + ∂∗∂,

it preserves the (p, q) degree, and so ∆dα = 0 if and only if ∆∂α =
∑

∆∂α
pq = 0, which occurs if

and only if each summand ∆∂α
pq = 0. Thus, a k-form α on a Kähler manifold is harmonic if and

only if each of its (p, q)-components is harmonic. We’ll see in the problem sets that this conclusion
does not always hold without the Kähler hypothesis.

So far we have made only local claims about Kähler manifolds, but with a compactness condition,
we get a global result. If X is compact, then we get the Hodge decomposition :

Hk
dR(X,C) ∼= {Harmonic k-forms} (by the Hodge theorem)

∼=
⊕

p+q=k

{Harmonic (p, q)-forms} (by the Kähler identities, as explained above)

∼=
⊕

p+q=k

Hq(X,Hp) (by the Hodge theorem for holomorphic vector bundles)

The first two steps say that every cohomology class in Hk
dR(X,C) is uniquely represented by a

harmonic k-form, which is uniquely a sum of harmonic (p, q)-forms. Note that the decomposition is
a claim about the complex structure on X, and not about the structure of X as a Kähler manifold!
Later today (and Thursday, as it turned out), we’ll prove that the decomposition is independent of
the choice of Kähler structure.

Remark 1.1.— Where are we using compactness in the Hodge decomposition? In step one (and
step three). It’s not true for non-compact X that there is an isomorphism

ker ∆→ Hk
dR(X,C).

We used the integration pairing on Ωk(X) to prove the injectivity of this map (on the homework),
and that pairing only makes sense if X is compact. In fact, we needed that pairing even to define
the map; that is, to get that ker ∆ ⊂ ker d we used that (∆η, η) = (dη, dη) + (d∗η, d∗η).

1



2 E. HUNTER BROOKS

For an example where the claim fails if X is non-compact, consider R, which has one-dimensional
cohomology in degree 0, but a 2-dimensional family of harmonic functions given by ax+b. Similarly,
there are non-trivial harmonic 1-forms on R given by (ax+ b)dx, even though the first cohomology
vanishes.

2. Consequences for the cohomology of compact Kähler manifolds.

Note that complex conjugation takes harmonic (p, q)-forms to harmonic (q, p)-forms:

∆dη = ∆dη

∆∂η = ∆∂η

Thus one has
dimHq(X,Hp) = dimHp(X,Hq).

From this, we get a four-fold symmetry in the Hodge diamond. Namely, writing Hp,q := Hq(X,Hp),
Serre duality tells us that Hp,q matches up with Hn−p,n−q, and the above observation tells us that
Hp,q matches up with Hq,p. So the dimension of the (p, q), (q, p), (n− q, n− p), (n− p, n− q) spots
in the Hodge diamond are all equal.

Remark 2.1.— We explain the comment about Serre duality in more detail. For an arbitrary
holomorphic vector bundle E, we have a duality Hq(X,E) = Hn−q(X,K ⊗E∗)∗ and in particular,
these vector spaces have the same dimension. When E = Hp, this says

(1) dimHq(X,Hp) = dimHn−q(X,Hp∗ ⊗K)

Now we have a perfect pairingHp⊗Hn−p → K given by wedge product. Tensoring the (tautological)
perfect pairing Hp ⊗Hp∗ → C with K, we see that Hp∗ ⊗K is canonically isomorphic to Hn−p, so
the result follows from (1). Editor’s Note: Hunter has rendered this much clearer than it
was in class.

Proposition 2.2. For any compact Kähler manifold, the odd-degree cohomology groups H2k+1(X,C)
are even-dimensional.

Proof. We have

H2k+1(X,C) =
⊕

p+q=2k+1

Hq(X,Hp).

The summands on the right hand side consist of pairs of equal-dimensional subspaces where p and
q are switched, since p 6= 2k + 1− p for any p. �

The proposition shows, for instance, that there can be no Kähler structure on S3 × S1, even
though this manifold does admit a complex structure. Namely, take q ∈ C×, with |q| < 1, and
consider the quotient of C2 \ {(0, 0)} by the relation

. . . ∼ (z1, z2) ∼ (qz1, qz2) ∼ (q2z1, q
2z2) ∼ . . .

A fundamental domain is q2 ≤ |z1|2 + |z2|2 < 1. This is S3× [0, 1], so the quotient is homeomorphic
to S3 × S1. So this is a compact complex manifold which doesn’t admit a Kähler structure at all.

Proposition 2.3. For any compact Kähler manifold, H2(X,C) is nontrivial.

Proof. We checked on the homework that for any Kähler manifold, ω is killed by d∗. So it’s
harmonic, and it’s certainly nonzero (from the non-degeneracy of the associated Hermitian inner
product). Writing Hp,q(X) for the Harmonic (p, q)-forms, we see that H1,1(X) is nonzero. �

Thus we see that the 6-sphere S6 doesn’t admit a Kähler structure. Now we will show the result
of Proposition 2.3 holds for all even-dimensional cohomology groups.

Lemma 2.4. If ω is a Kähler form, then for 1 ≤ k ≤ n, the k-form

k︷ ︸︸ ︷
ω ∧ ω ∧ . . . ∧ ω is harmonic

and nonzero.
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Proof. It follows from problem 2 on Problem Set 9 that L and Λ take harmonic forms to harmonic
forms, and the form we’re looking at is just Lk acting on the harmonic 0-form 1. It remains to
show that the form is nonzero. It’s enough to check this for ω ∧ . . . ∧ ω︸ ︷︷ ︸

n

, since

ω ∧ . . . ∧ ω︸ ︷︷ ︸
n

= ω ∧ . . . ∧ ω︸ ︷︷ ︸
k

∧ω ∧ . . . ∧ ω︸ ︷︷ ︸
n−k

.

We claim this is just n! times the volume form, which is itself obviously nonzero. We can check
this equality at a point. Let

zj = xj + iyj

be nice coordinates centered at a given point. Then

ω =
1

−2i

∑
dzj ∧ dzj + . . .

=
∑

dxj ∧ dyj + . . . , so

∧nω =n!(dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn) + . . .

(We don’t get any negative signs in the last line of the computation, because we always commute
an even number of terms past an even number of terms.) Now, the higher order terms omitted
in each line of the above computation vanish at the point z1, . . . , zn, and the point at which we
centered our coordinates was arbitrary, so ∧

nω
n! is equal on the nose to the volume form. �

The same proof as in Proposition 2.3 gives:

Corollary 2.5. For X a compact Kähler manifold, we have dimHk,k(X) ≥ 1. In particular, the
even-degree cohomology groups H2k(X,C) are non-trivial.

Later, we’ll show something stronger than the proposition, namely, that

Ln−k : Harmonic k-forms→ Harmonic (2n− k)-forms

is an isomorphism.

3. The ∂∂-Lemma

The following is often called the ∂∂-lemma, and its name is often pronounced “dee dee bar”
rather than “del del bar.”

Lemma 3.1 (Reference: Voisin 6.17). Let X be compact Kähler. For α a d-closed (p, q)-form, the
following are equivalent:
(1)α = ∂∂β for some (p− 1, q − 1)-form β.
(2)α = ∂γ for some ∂-closed γ.
(2′)α = ∂γ′ for some ∂-closed γ.
(3)α = ∂γ for some γ
(3′)α = dγ′ for some γ′.
(3′′)α = ∂γ′ for some γ′.
(4)α = ∂γ + ∂γ′ for some γ, γ′.

Proof. The easy implications, which have nothing to do with the compact or Kähler hypotheses,
are depicted in the diagram below. For instance, to see that (1) implies (2), just take γ = ∂β. The
other implications all follow from (4) implies (1), which we’ll do in the next lecture.
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4. Independence of Hodge decomposition from Kähler structure

The remainder of this was presently poorly in class, and will be redone at the start
of Thursday.

Using this lemma, we can explain why, for a compact Kähler manifold, the Hodge decomposition
Hk(X,C) =

⊕
Hp,q(X) is independent of the choice of Kähler structure. First, we claim that we

have a decomposition

Hk
dR(X,C) =

⊕
p+q=k

{d-closed (p, q)-forms}
{d-exact (p, q)-forms}

.

Indeed, any closed k-form α has a unique harmonic representative α, which decomposes into
∑
αp,q,

and, again using the Kähler relations, the αp,q are harmonic. This decomposition is independent
of the particular Kähler structure used to prove it, since it’s just a statement that the de Rham
cohomology classes are spanned by the (p, q)-subspaces (which have pairwise trivial intersection).

So what we need to show is that

{d-closed (p, q)-forms}
{d-exact (p, q)-forms}

∼= Hq(X,Hp).

independent of the choice of Kähler structure. We can do this by showing the two identifications

{d-closed (p, q)-forms}
{d-exact (p, q)-forms}

(a)
=

{d-closed (p, q)-forms}
∂{∂-closed(p, q − 1)-forms.}

(b)∼=
{∂-closed (p, q)-forms}
∂{all (p, q − 1)forms}

,

since this last space is just Hp,q(X) (as follows from the ∂-Poincare lemma). Identification (a)
(which is literally an equality) follows because the two spaces being killed are the same, by the
equivalence (2′)⇔ (3′) of the ∂∂-Lemma.

For equality (b), we certainly have a map

{d-closed (p, q)-forms}
∂{∂-closed(p, q − 1)-forms.}

→ {∂-closed (p, q)-forms}
∂{all (p, q − 1)forms}

.

To see that this map is injective, suppose that a d-closed form α is of the form ∂γ′ for some γ′ a
(p, q − 1)-form. Then by (3′′) ⇒ (2′) of the ∂∂-Lemma, we see that α = ∂γ′ for some ∂-closed γ,
and hence is zero in the domain. To see that it is surjective, take an arbitrary ∂-closed (p, q) form
η, and set α = ∂η. Then dα = ∂∂η + ∂∂η = 0 − ∂∂η = 0, and using (2) ⇒ (1) of the ∂∂-Lemma,
we see that α = ∂∂β for some β. Thus η − ∂β ∈ ker ∂ and likewise ker ∂, so is in ker d; the image
of η − ∂β under our map is (the class of) η.


