NOTES FOR MARCH 24

SCRIBE: GIWAN KIM

1. What does the Hodge decomposition look like?

Let X be a (compact) complex manifold with a Hermitian metric. We have defined the operators

 $\partial, \overline{\partial}, *, \partial^*, \overline{\partial}^*$

where the first two operators are defined in terms of complex structure, ∗ takes the metric structure as input and the two adjoint operators ∂^* and $\overline{\partial}^*$ takes a combination of complex structure and the metric as input. On the Hodge diamond the operators can be visualized as

Some identities derived from $d = \partial + \overline{\partial}$ and $d^2 = 0$ are

- $\partial_{\circ}^{2} = 0$
- $\overline{\partial}^2 = 0$

$$
\bullet \ \partial \overline{\partial} + \overline{\partial} \partial = 0
$$

and corresponding adjoint operators satisfy

- $(\partial^*)^2=0$
- $\left(\overline{\partial}^{*}\right)^{2}=0$
- $\dot{\partial}^* \dot{\overline{\partial}}^* + \overline{\partial}^* \partial^* = 0$

deduced from $d^* = \partial^* + \overline{\partial}^*$ and $(\overline{\partial}^*)^2 = 0$.

We can compute the Laplacian Δ_d in terms of the "partial" operators:

$$
\Delta_d = (\partial + \overline{\partial})(\partial^* + \overline{\partial}^*) + (\partial^* + \overline{\partial}^*)(\partial + \overline{\partial})
$$

= $(\partial \partial^* + \partial^* \partial) + (\overline{\partial \partial}^* + \overline{\partial}^* \overline{\partial}) + (\partial \overline{\partial}^* + \overline{\partial}^* \partial) + (\partial^* \overline{\partial} + \overline{\partial} \partial^*)$
= $\Delta_{\partial} + \Delta_{\overline{\partial}} +$ pairs of maps going sideways in the Hodge diamond.

Suppose X is Kähler so that $\partial \overline{\partial}^* + \overline{\partial}^* \partial = 0$ and $\partial^* \overline{\partial} + \overline{\partial} \partial^* = 0$ "no sideways skipping" and $\Delta_d = \partial \partial^* + \partial^* \partial = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial} = \Delta_{\overline{\partial}}$. Moreover, there is a suitable notion to make sense of the decomposition

$$
\Omega^{p,q}(X)=\bigoplus_{\lambda\geqslant 0} \left(\lambda\textrm{-eigenspaces for }\Delta\right)=\bigoplus_{\lambda\geqslant 0}\Omega_\lambda^{p,q}(X)
$$

where $\Delta := \Delta_{\partial} = \Delta_{\overline{\partial}} = \frac{1}{2} \Delta_d$ such that

- (1) there is a (discrete) sequence $\{\lambda_i\}$ with $\lambda_i \geq 0$ and $\lambda \to \infty$
- (2) the λ -eigenspaces for Δ , $\Omega_\lambda^{p,q}$ are finite dimensional
- (3) every (p, q) -form can be written uniquely as a sum of one element from each $\Omega_{\lambda}^{p,q}$.

Moreover, ∂ , $\overline{\partial}$, ∂^* , $\overline{\partial}^*$ all commute with Δ . For example,

$$
\partial \Delta = \partial(\partial \partial^* + \partial^* \partial) = \partial \partial^* \partial = (\partial \partial^* + \partial^* \partial) \partial = \Delta \partial.
$$

So $\partial, \overline{\partial}, \partial^*, \overline{\partial}^*$ preserves the eigenspace decomposition; i.e. maps $\Omega^{\bullet,\bullet}_{\lambda}$ to $\Omega^{\bullet,\bullet}_{\lambda}$.

On $\Omega_0^{\bullet,\bullet}$, the harmonic forms ∂ , $\overline{\partial}$, $\partial^*, \overline{\partial}^*$ are all zero maps. So on the Hodge diamond harmonic forms are direct sums of

As operators on $\Omega_{\lambda}^{\bullet,\bullet}$ for $\lambda > 0$, $\partial, \overline{\partial}, \partial^*, \overline{\partial}^*$ satisfy

- (1) $\partial, \overline{\partial}^2, (\partial^*)^2, (\overline{\partial}^*)^2$ are 0
- $\overline{(\overline{2})} \quad \partial \overline{\partial} + \overline{\partial} \partial, \partial \overline{\partial}^* + \overline{\partial}^* \partial, \partial^* \overline{\partial}^* + \overline{\partial}^* \partial^*, \overline{\partial} \partial^* + \partial^* \overline{\partial} \text{ are } 0$
- (3) $\partial \partial^* + \partial^* \partial = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial} = \lambda \mathrm{Id}.$

Let $Z^{p,q}$ be the subspace of $\Omega_\lambda^{p,q}$ killed by ∂^* and $\overline{\partial}^*$. On the homework, we showed that $Z^{p,q} \cong \overline{\partial} Z^{p,q} \cong \overline{\partial} \overline{\partial} Z^{p,q}$ and that we can choose bases such that the maps between the four spaces are

We also showed that

$$
\Omega_\lambda^{p,q}=Z^{p,q}\oplus \partial Z^{p-1,q}\oplus \overline{\partial} Z^{p,q-1}\oplus \partial \overline{\partial} Z^{p-1,q-1}.
$$

One way to do this is to write down formulas for the four projections $\Pi_i: \Omega_\lambda^{p,q} \longrightarrow \Omega_\lambda^{p,q}$ $_{\lambda}^{p,q}$ such that $\Pi_i\Pi_j = \delta_{ij}$ and $\Pi_1 + \Pi_2 + \Pi_3 + \Pi_4 = \text{Id}$. For instance, one can define the projection onto $Z^{p,q}$ as

Similarly, the other maps involve going in circles in the Hodge diamond and that the Π_i satisfy the relations can be seen (without writing anything down) by thinking about the relations among ∂ , $\overline{\partial}$, ∂^* , $\overline{\partial}^*$ in terms of pictures. For instance, going in circle counter-clockwise is the same as going clockwise since sign reverses twice....

As a consequence, $\Omega^{\bullet,\bullet}$ decomposes into a direct sum of

On a non-Kähler manifold such as the Hopf surface ($\cong S^1 \times S^3$) the "angle" form on S^1 pulls back to a combination of $(1, 0)$ and $(0, 1)$ -form which fits into the diagram

which should not appear on Kähler manifolds.

We have the Hodge decomposition

$$
\frac{\operatorname{Ker}(\partial + \overline{\partial} : \Omega^k \longrightarrow \Omega^{k+1})}{\operatorname{Im}(\partial + \overline{\partial} : \Omega^{k-1} \longrightarrow \Omega^k)} \cong \bigoplus_{p+q=k} \frac{\operatorname{Ker}(\overline{\partial} : \Omega^{p,q} \longrightarrow \Omega^{p,q+1})}{\operatorname{Im}(\overline{\partial} : \Omega^{p,q-1} \longrightarrow \Omega^{p,q})}.
$$

To see Hodge Theorem (concerning harmonic representatives for deRham or Dolbeault cohomology) from what we have discussed so far notice that (p, q) -harmonic forms contribute to LHS when $k = p + q$ and contributes to (p, q) -summand on RHS, while a 2 \times 2 square contributes nothing to both sides.

It is also interesting to see how you could have dim $H^k(X)$ different from $\sum_{p+q=k}$ dim $H^q(X, \mathcal{H}^p)$. For example, we could have a picture like:

(Here all other maps are zero and $\mathbb{C}_{(p,q)}$ denotes an 1-dimensional subspace of $\Omega^{p,q}$.) This contributes nothing to the LHS but on the RHS contributes to the (p, q) and $(p + 1, q)$ -summand.

2. FINISHING UP THE $\partial\overline{\partial}$ lemma

Missing part of $\partial \overline{\partial}$ -lemma was (4) implies (1); that is, if α is a (p, q) -form which is $\partial \gamma_1 + \overline{\partial} \gamma_2$ and α is d-closed then $\alpha = \partial \overline{\partial} \beta$. Since α is d-closed, α is a sum of harmonic forms and bottom of squares. Image of ∂ is lower left side of these squares and image of $\overline{\partial}$ is lower right side of the squares. So α must be a sum of bottom parts of squares which implies that α is in the image of ∂∂.

With the ∂∂-lemma we can prove the independence of Hodge decomposition from Kähler structure. This has already been written down in the notes for March 22.

Remark: Every double complex over a field is a direct sum of squares, dots, zigzags. So the interesting fact is that there are no zig-zags.

3. STANDARD COORDINATES ON \mathbb{C}^n

There is a lot of sign confusion, so here is a formula you can memorize.

Let z_1, \ldots, z_n be the usual complex coordinates on \mathbb{C}^n so that $z_j = x_j + iy_j$. We can write the standard Kähler form in coordinates as

$$
\omega = \frac{1}{(-2i)^n} \sum_{j=1}^n dz_j \wedge d\overline{z}_j = \sum_{j=1}^n dx_j \wedge dy_j.
$$

Let $A_j = dx_j \wedge dy_j = \frac{1}{-2i} dz_j \wedge d\overline{z}_j$. On \mathbb{C} , we have $*1 = A_1, *A_1 = 1, * (dz) = * (dx + idy) =$ $dy - idx = -idz$, and $*(d\overline{z}) = id\overline{z}$. Write $\eta = \eta_1 \wedge \eta_2 \wedge \cdots \wedge \eta_n$ where $\eta_j \in \{1, dz_j, d\overline{z}_j, A_j\}$ and let a be the number of occurrences of 1, b for dz_j , c for $d\overline{z}_j$, and d for A_j . Then

$$
*\eta=(-1)^{{b+c \choose 2}}(*_1\eta_1)\wedge(*_2\eta_2)\wedge\cdots\wedge(*_n\eta_n).
$$