
NOTES FOR MARCH 29

BROOKE ULLERY

Today, X is compact Kähler:

Primitive cohomology and Lefschetz decomposition

Question. How do L and Λ act on harmonic forms?

Here is the answer, which we will be proving today:

Answer. L and Λ commute with ∆ (Problem 2 on homework). They take
harmonic forms to harmonic forms (and, more generally, the λ-eigenspace
of ∆ to itself).

The action splits into:
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where all arrows are isomorphisms. In correct bases, they are integers times
the identity.

If the string goes from Hk to H2n−k, the arrows are
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2 BROOKE ULLERY

The longest string is the one that goes from H0, represented by the har-
monic function 1, to the volume form ωn/n!.

This decomposition respects Hodge decomposition, so:

H•,• =
⊕
p,q

(string from (p, q) to (n− q, n− p))

Example 1. Consider projective space. The only cohomology groups are
in Hp,p, which is 1 dimensional. So we have a vertical row of C’s with bases
1, ω, ω2/2 , ω3/6, . . .

Example 2. A genus g curve. The Hodge diamond looks like:
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Definition 3. A harmonic form is called primitive if it is in ker Λ (i.e. the
“top of a string”). We also call such a cohomology class primitive.

So we have

Hp,q = Hp,q
prim ⊕ LH

p−1,q−1
prim ⊕ L2Hp−2,q−2

prim ⊕ · · ·

Theorem 4 (Hard Lefschetz). Ln−k : Hk(X) → H2n−k(X) is an isomor-
phism.

Key Computation: [Λ, L] = (n− k)Id on Ωk(X).

Proof. We can immediately reduce to nice coordinates. The formula is C∞-
linear, so it suffices to check for dzI ∧ dz̄J .

dzI = dzi1 ∧ . . . ∧ dzir
and

dz̄J = dz̄j1 ∧ . . . ∧ dz̄js .
What kind of terms appear in ΛL(dzI ∧ dz̄J) or in LΛ(dzI ∧ dz̄J)?

• dzI+k−l ∧ dz̄J+k−l for some l ∈ I ∩ J , k /∈ I ∪ J , and
• dzI ∧ dz̄J .

The coefficients of dzI+k−l ∧ dz̄J+k−l in ΛL(dzI ∧ dz̄J) and in LΛ(dzI ∧ dz̄J)
match. The coefficient of dzI ∧ dz̄J in (ΛL− LΛ(dzI ∧ dz̄J) is #([n]− (I ∪
J))−#(I ∩ J) = n−#(I ∪ J)−#(I ∩ J) = n−#I −#J = n− k. �

Let η ∈ Hk(X) be primitive. Then (ΛL − LΛ)η = (n − k)η, so ΛLη =
(n− k)η.

So we have

η
1 **

Lη
n−k

hh



NOTES FOR MARCH 29 3

and we want to build a string off to the right.
Define

η(r) =
Lrη

r!
(might be 0).

Then we have

η = η(0)
1 ++

η(1)
2 ++

η(2)
3 ++

η(3)
4 ** · · ·

Claim 5. Λη(r) = (n− k − r + 1)η(r−1)

Proof. Induction on r. We just checked the base case: Λ(Lη) = (n− k)η.
Now we have

Λη(r) = Λ
Lrη

r!
= (n− k − 2r + 2)

Lr−1η

r!
+
LΛLr−1η

r!

=
1

r
((n− k − 2r + 2)η(r−1) + LΛη(r−1)

=
1

r
((n− k − 2r + 2)η(r−1) + L(n− k − r)η(r−2)

=
1

r
((n− k − 2r + 2) + (r − 1)(n− k − r + 2))η(r−1)

= (n− k − r + 1)η(r−1).

�

We have constructed

η(0)
1 ++
η(1)

n−k
kk

2 ++
· · ·

n−k−1
kk

n−k ,,
η(n−k)

1

kk

n−k+1 --
η(n−k+1)

0

ll

n−k+2
++ · · ·

−1
mm

Corollary 6. η(0), η(1), . . . , η(n−k) are all nonzero. All higher η(j) are zero.

Proof. If j ≤ n− k, then Λjη(j) = (nonzero)η, so η(j) is nonzero.

On the other hand, some η(N) = 0. For j > n−k, η(j) = (nonzero)ΛN−jη(N),

so η(j) = 0. �

Claim 7. Suppose X is a compact Kähler manifold. Then, by induc-
tion on k, we can extend H0

prim, H
1
prim, . . . ,H

k
prim out to such strings, with⊕

L
m−j

2 Hj
prim injecting into Hm

prim.

Proof. Say we’ve built such strings starting at H0
prim, H

1
prim, . . . ,H

k−1
prim Now

Hk(X) = Ker Λ⊕ ImL, as (Lα, β) = (α,Λβ). All the strings we have built
so far lie in ImL, so the primitive cohomology is transverse to what we have
already built.

If we had some relation Ljη =
∑
CrL

jθr, η ∈ Ker Λ : Hk → Hk−2, and
θr ∈ ImL : Hk−2 → Hk.

Apply Λj . On each string, ΛjLj is some nonzero scalar, and we know
there is no relation back in Hk

prim. �
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Corollary 8. If X is compact Kähler then

b0 ≤ b2 ≤ b4 ≤ · · · ≤ b halfway

b1 ≤ b3 ≤ b5 ≤ · · · ≤ bhalfway

Hodge star in terms of L and Λ

We know L : Hk
∼=−→ H2n−k and ∗ : Hk

∼=−→ H2n−k. What is the
relationship?

Claim 9. Let η be in Hp,qprim, meaning that Λη = 0, and let k = p+ q. Then

∗η = (−1)k(k+1)/2ip−q
Ln−k

(n− k)!
η = (−1)k(k+1)/2ip−qη(n−k)

.

More generally, we define

† = e−ΛeLe−Λ : H•,• → H•,•.

Note that L and Λ are nilpotent, so this operator makes sense.
We claim that, in general,

∗ = (−1)k(k+1)/2ip−q†

on Hp,q.
Let’s see how this reduces to the claim. If η is primitive then

†η = e−ΛeLe−Λη

= e−ΛeL(η + 0 + 0 + · · · )
= e−Λ(η + η(1) + η(2) + · · ·+ η(n−k))

= (stuff in degree < (2n− k)) + η(n−k)

Since the above relation tells us that †η is a multiple of ∗η, we know that
†η lives in degree 2n− k. So all the terms in lower degree must be zero and
we have †η = η(n−k). Using the above relation again, we have

∗η = (−1)k(k+1)/2 ip−q η(n−k)

as desired.
Now, we need to show

∗ = (−1)k(k+1)/2ip−q † .

We claim this is true on Ω•,•, so we can check point by point in nice coor-
dinates.
η = η1∧η2∧ . . .∧ηn, such that ηj ∈ {1, dzj , dz̄j , Aj}, where Aj =

dzj∧dz̄j
−2i .

If Lj = wedge with Aj and Λj = contract with Aj then L =
∑
Lj and

Λ =
∑

Λj .
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Note that, for j 6= j′, Lj and Lj′ commute, as do Lj ,Λj′ and Λj ,Λj′ . So

e−ΛeLe−Λ = (e−Λ1 . . . e−Λn)(eL1 . . . eLn)(e−Λ1 . . . e−Λn)

= (e−Λ1eL1e−Λ1) . . . (e−ΛneLne−Λn)

= †1 . . . †n .
So †η = (†1η1)∧. . .∧(†nηn), where †j sends 1, Aj , dzj , and dz̄j to Aj ,−1, dzj ,
and dz̄j , respectively. Up to a power of i, this is the same as ∗η.

Checking the sign (not done in class)

We now check the sign. Let a, b, c and d be the number of 1’s, dzj ’s, dzj ’s
and Aj ’s among the η’s. For notational convenience, define δj by

δj = Aj if ηj = 1
dzj dzj
dzj dzj
1 Aj

Let δ = δ1 ∧ δ2 ∧ · · · ∧ δn.
Then †η = (−1)dδ. (Just look at the signs in e−ΛjeLe−Λj .) Also, ∗η =

ic−b(−1)(
b+c
2 )δ. Here the ic−b term is comes from the fact that ∗ turns dzj

into −idzj and turns dzj into idzj ; the (−1)(
b+c
2 ) comes from the sign of

rearranging η ∧ δ into A1 ∧A2 ∧ · · ·An.
So

∗η = ic−b(−1)(
b+c
2 )+dη.

We rewrite the coefficient as ib−c(−1)(
b+c
2 )+b+c+d. Note that p − q = (b +

d)− (c+d) = b− c. So the first time is ip−q. So we are left wanting to check
that

(−1)(
b+c
2 )+b+c+d = (−1)k(k+1)/2.

We have k = b+ c+ 2d, so our goal is to show that

(b+ c)(b+ c− 1)

2
+ b+ c+ d ≡ (b+ c+ 2d)(b+ c+ 2d+ 1)

2
mod 2.

This is what computer algebra systems are meant for. Subtracting the
two sides, we need to check that

2(b+ c+ d)d ≡ 0 mod 2

which is obvious.


