NOTES FOR MARCH 31

TENGREN ZHANG

Let X be a compact Kähler manifold of dimension n, and define $L^{(n-k)} = \frac{L^{n-k}}{(n-k)!}$. Last time, we computed that $*: H^{p,q}_{\text{prim}}(X) \to H^{n-q,n-p}(X)$ is given by the formula $* = i^{p-q}(-1)^{\frac{k(k+1)}{2}}L^{(n-k)}$. Today we pursue consequences of this formula.

The positive definite Hermitian form on $H^n(X)$

Define a positive definite Hermitian form on $H^{p,q}_{\text{prim}}(X)$ by $(\alpha,\beta) = i^{p-q}(-1)^{\frac{k(k+1)}{2}} \int_X \alpha \wedge \overline{L^{(n-k)}\beta}$. This Hermitian form is in fact the hermitian form $\int_X \alpha \wedge *\overline{\beta}$ defined previously, but restricted to the primitive part.

We check that this is in fact positive definite in the following Corollary.

Corollary: For any primitive (p, q)-form η , $(\eta, \eta) \ge 0$, with equality if and only if $\eta = 0$.

Proof: Observe that $(\eta, \eta) = \int_X \eta \wedge i^{p-q} (-1)^{\frac{k(k+1)}{2}} L^{(n-k)} \eta = \int_X \eta \wedge \overline{*\eta}$, and we know that $\int_X \eta \wedge \overline{*\eta} \ge 0$, with equality holding if and only if $\eta = 0$. \Box

Suppose that I know X and its complex structure, then I can decompose $H^k(X, \mathbb{C})$ into the direct sums of $H^{p,q}(X)$ without knowing the Kähler structure. (See March 22.) Let ω be the negative of the imaginary part of the Kähler form on X, and suppose all we know is what the class $[\omega] \in H^{1,1}(X)$ is. We will now show that this is enough information to recover the Hermitian positive definite pairing on $H^{\bullet}(X)$ given by $(\alpha, \beta) = \int_X \alpha \wedge \overline{\ast\beta}$. Note that since L commutes with Δ , we can view L as a map from $H^{p,q}(X) \to H^{p+1,q+1}(X)$, and this is given by $L : [v] \mapsto [\omega v]$. This allows us to say (by a problem in Problem Set 10) what the primitive cohomology is, so we can get the decomposition $H^{p,q}(X) = H^{p,q}_{\text{prim}}(X) \oplus LH^{p-1,q-1}_{\text{prim}}(X) \oplus L^2 H^{p-2,q-2}_{\text{prim}}(X) \oplus \ldots$ Also, by knowing L, we can say what (\cdot, \cdot) is on each $L^i H^{p-i,q-i}_{\text{prim}}(X)$, and since we know that the components of this decomposition are pairwise orthogonal under (\cdot, \cdot) , we can recover (\cdot, \cdot) on all of $H^{p-q}(X)$.

Application – A theorem of Serre

Every graduate class should prove at least one publishable theorem. This one is Serre, "Analogues Kählériens de certaines conjectures de Weil", Annals of Math. **71** (1960).

Theorem: (Serre) If X is compact Kähler and $F : X \to X$ is an endomorphism such that $F^*[\omega] = q[\omega]$ for $q \in \mathbb{R}_{>0}$, then the eigenvalues of F on $H^k(X)$ have norm $q^{\frac{k}{2}}$.

Proof: Since $F^*([\omega]) = q[\omega]$, we have that $F^*L([\eta]) = qLF^*([\eta])$, and in particular, F^* preserves $L^j H^{p-j,q-j}_{\text{prim}}(X)$. Also,

$$\begin{split} \int_X F^*\eta \wedge L^{(n-k)}F^*\overline{\eta} &= \frac{1}{q^{n-k}}\int_X F^*\eta \wedge F^*(L^{(n-k)}\overline{\eta}) \\ &= \frac{1}{q^{n-k}}\int_X F^*(\eta \wedge (L^{(n-k)}\overline{\eta})) \\ &= \frac{q^n}{q^{n-k}}\int_X \eta \wedge (L^{(n-k)}\overline{\eta}) \end{split}$$

The last equality holds because $[\eta \wedge L^{(n-k)}\overline{\eta}] \in H^{2n}(X)$, which is the \mathbb{C} -span of $[\omega^n]$. Thus, $[\eta \wedge L^{(n-k)}\overline{\eta}] = c[\omega^n]$ for some $c \in \mathbb{C}$, which means $F^*([\eta \wedge L^{(n-k)}\overline{\eta}]) = cF^*([\omega^n]) = q^n[\eta \wedge L^{(n-k)}\overline{\eta}]$. The above computation shows that $(F^*\eta, F^*\eta) = q^k(\eta, \eta)$. (Note that F^* is \mathbb{C} -linear, so $F^*\overline{\eta} =$

 $\overline{F^*\eta}$.) Since the norm (,) is positive definite Hermitian, this implies that $q^{-\frac{k}{2}}F^*$ is unitary. So all eigenvalues of $q^{-k/2}F^*$ all have norm 1 and we see that eigenvalues of F^* all have norm $q^{k/2}$. \Box

TENGREN ZHANG

ANOTHER HERMITIAN FORM ON $H^n(X)$

Let p + q = n - 2j, and consider $L^{j}H^{p,q}_{\text{prim}}(X) \subset H^{p+j,q+j}(X) \subset H^{n}(X)$. Define a positive definite Hermitian form on $L^{j}H^{p,q}_{\text{prim}}(X)$ given by $(\alpha,\beta) \mapsto i^{p-q}(-1)^{\frac{(p+q)(p+q+1)}{2}} \int_{X} \alpha \wedge \overline{\beta}$. This is positive definite because for any $\theta \in L^{j}H^{p,q}_{\text{prim}}(X)$, we can write $\theta = L^{j}\eta$ for $\eta \in H^{p-j,q-j}$, so $\int_{X} \theta \wedge \overline{\theta} = \int_{X} L^{j}\eta \wedge L^{j}\overline{\eta} = \int_{X} \eta \wedge L^{2j}\overline{\eta}$. Positive definiteness then follows from the relationship between * and L, and the fact that $\int_{X} \alpha \wedge *\beta$ is a positive definite hermitian form.

On the other hand, we can avoid the complicated sign rule above and just define a Hermitian form on $H^n(X, \mathbb{C})$ by $\langle \alpha, \beta \rangle \mapsto \int_X \alpha \wedge \overline{\beta}$. Note that this is not positive definite.

Example: Consider the Kähler manifold $\mathbb{P}^1 \times \mathbb{P}^1$, and let ω_1, ω_2 be the pullbacks of the Fubini-Study forms from each copy of \mathbb{P}^1 . Then $H^{\bullet}(\mathbb{P}^1) = \mathbb{C} \oplus 0 \oplus \mathbb{C}$, so $H^2(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{C}^2$ by Kunneth. Explicitly, the generators of H^2 are ω_1 and ω_2 , the two Fubini-Study forms.

By computing the Fubini-Study metric in coordinates, we see that $\omega_1 \wedge \omega_1 = 0$, so $\langle \omega_1, \omega_1 \rangle = \int_X \omega_1 \wedge \omega_1 = \int_X 0 = 0$. Similarly, we can show that $\langle \omega_2, \omega_2 \rangle = 0$ and $\langle \omega_1, \omega_2 \rangle = \langle \omega_2, \omega_1 \rangle = 1$.

Every (1, 1)- form on $\mathbb{P}^1 \times \mathbb{P}^1$ is of the form $a_1\omega_1 + a_2\omega_2$ for a_1 and $a_2 \in \mathbb{C}$. Thus, if $\omega = a_1\omega_1 + a_2\omega_2$ is a Kähler form, then $\omega(u, v) > 0$, which means $a_1\omega_1(u) + a_2\omega_2(v) > 0$ for any nonzero (u, v). So the Kähler forms are $\omega = a_1\omega_1 + a_2\omega_2$ for a_1 and $a_2 > 0$.

Using the Lefschetz decomposition, we can write $H^{1,1}(X) = H^{1,1}_{\text{prim}}(X) \oplus LH^{0,0}_{\text{prim}}(X)$, and it is easy to see that $LH^{0,0}_{\text{prim}}$ is the \mathbb{C} -span of ω while $H^{1,1}_{\text{prim}}$ is the \mathbb{C} -span of $\theta := a_1\omega_1 - a_2\omega_2$. A straight forward computation then gives us that $\langle \omega, \omega \rangle = 2a_1a_2$ and $\langle \theta, \theta \rangle = -2a_1a_2$, so $\langle \cdot, \cdot \rangle$ is positive definite on $LH^{0,0}_{\text{prim}}$ and negative definite on $H^{1,1}_{\text{prim}}$.

Note that $\langle \cdot, \cdot \rangle$ is \mathbb{R} -valued when n is even and imaginary valued when n is odd. Also, when n is even, the restriction of $\langle \cdot, \cdot \rangle$ to $H^n(X, \mathbb{R})$ is \mathbb{R} -valued, and so it is a symmetric pairing for elements in $H^n(X, \mathbb{R})$. Recall that, for any symmetric bilinear form over \mathbb{R} (or Hermitian bilinear form over \mathbb{C}), the signature of the form is the difference between the number of +1's and number of -1's when you diagonalize the form.

We can compute the signature of \langle , \rangle on $H^n(X)$ by counting up the dimensions of the spaces $L^j H^{p-j,q-j}_{\text{prim}}(X)$ (with p+q=n) on which we know \langle , \rangle to be positive or to be negative.

Working out explicitly what $i^{p-q}(-1)^{k(k+1)/2}$ is, we can read off the sign of \langle , \rangle on $L^{j}H^{p-j,q-j}(X)$ in the following top half diamond:

$H^0(X)$					+				
$H^2(X)$				+	_	+			
$H^4(X)$			+	_	+	_	+		
$H^6(X)$		+	—	+	—	+	—	+	
$H^8(X)$	+	_	+	_	+	_	+	_	+
	÷	÷	÷	÷	÷	÷	÷	÷	÷

For example, the sign on $L^{j}H^{1,1}_{\text{prim}}$ is negative, and the sign on $L^{j}H^{4,2}(X)$ is negative.

The special case of $H^{1,1}$ on a surface

On a surface (complex dimension 2), we can write $H^2 = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$ and $[\omega] \in H^{1,1}$. $LH^{0,0}_{\text{prim}}$ is $\mathbb{C} \cdot \omega$. By considering the diamond above, we see that $\langle \cdot, \cdot \rangle$ is negative definite on $H^{1,1}_{\text{prim}}(X)$.

For $\eta \in H^{1,1}(X)$, let $a = \langle \omega, \eta \rangle / \langle \omega, \omega \rangle$. The orthogonal projection of η onto $H^{1,1}_{\text{prim}}(X)$ is $[\eta - a\omega]$. So $\langle \eta - a\omega, \eta - a\omega \rangle \leq 0$. Rearranging terms in this sum gives

$$\langle \eta, \eta \rangle \langle \omega, \omega \rangle \leq \langle \omega, \eta \rangle^2$$

with strict inequality if $[\eta]$ is not a multiple of $[\omega]$. For those who know the algebraic picture, compare to Hartshorne Theorem V.1.9.