
HODGE THEORY FOR R- MANIFOLDS

PEDRO ACOSTA

1. Vector bundles with an inner product, and ∗

Let X be an R-fold, and let π : E −→ X be a real vector bundle, of rank r, equipped with a
positive definite symmetric bilinear form.

If e1, . . . , er ∈ π−1(X) are orthonormal, then e1 ∧ · · · ∧ er is a non-trivial vector in
∧r E.

Proposition: If f1, . . . , fr is any other orthonormal basis for π−1(X), then e1 ∧ · · · ∧ er =
±f1 ∧ · · · ∧ fr.

Proof. Note that fi = g · ei for g ∈ O(r), so det(g) = ±1. �

So, given this data, I get two points in each fiber of
∧r E.

Assumption: This is a trivial two fold cover. Choose one connected component and call that
section of

∧r E τ . Given this data, I have:

∧r
E ×

∧r
E −→ R

∧k
E ×

∧r−k
E −→

∧r
E −→ R

First Pairing:
The inner product on E gives a map E −→ E∗, so functorially I get

∧k
E −→

∧k
(E∗) ∼= (

∧k
E)∗.

Concretely, given vectors v1 ∧ · · · ∧ vk and w1 ∧ · · · ∧ wk ∈
∧k E, we have

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det(〈vi, wj〉),

extended linearly. This is a symmetric pairing.
Second Pairing:

∧k
E ×

∧r−k
E −→

∧r
E −→ R

Lemma:Both of these are perfect pairings.

Proof. Check in an orthonormal trivialization. �

So, we can get a map

∗ :
∧k

E −→
∧r−k

,

making these two pairings coincide.
In an orthonormal trivialization, where τ = e1 ∧ · · · ∧ en

∗ : ei1 ∧ · · · ∧ eik 7→ (−1)σej1 ∧ · · · ∧ ejr−k

where 1 ≤ i1 < i2 < · · · < ik ≤ r and 1 ≤ j1 < j2 < · · · < jr−k ≤ r with

[r] = {i1, . . . , ik} ⊔ {j1, . . . , jr−k}

σ = |{(ia, jb)‖jb < ia}|.

Thus, ∗∗ = (−1)k(r−k)Id.
In a general basis v1, . . . , vr, let gij = 〈vi, vj〉, then

det(g) = 〈v1 ∧ · · · ∧ vr, v1∧, . . . ,∧vr〉

τ = ±
v1 ∧ · · · ∧ vr
√

det(g)

and
1
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∗ : vi1 ∧ · · · ∧ vik 7→
∑

J ′

(−1)σ(I
′,J ′)

det(giai′b)
√

det(g)
vj′

1
∧ · · · ∧ vj′

r−k
,

with I ′ = [r] J ′ .
Note: The ∗ map is defined fiber by fiber. In other words, it is C∞-linear.

2. ∗ on the tangent bundle

Let E be T∗X.
Given an inner product on E, we can get an inner product on E∗. In coordinates, if 〈vi, vj〉 = gij ,

then 〈v∗i , v
∗

j 〉 = (g−1)ij . So we may equivalently talk about an inner product on T ∗X.
Note: Any E has some inner product on it. Any X has some inner product on T ∗X.
Side comment: Why is differential geometry so hard? Whenever doing computations in E, a

vector bundle with an inner product, you want to work in an orthonormal basis. Whenever you
are doing computations in T∗X, you want to work in ∂

∂x1
, . . . , ∂

∂xn
. You can’t do both!

Let X be a smooth, oriented, real n-fold with a positive definite symmetric bilinear form on
T∗X, and hence on T ∗X.

“Oriented” deals with τ : we’ll have τ = e1∧· · ·∧en, where ei is an orthonormal basis respecting

the orientation. So, we get ∗ :
∧k T ∗X −→

∧n−k T ∗X and we get a map of sheaves of C∞-modules
from Ωk −→ Ωn−k. As before, ∗∗ = (−1)k(n−k).

If X is compact, we get an inner product on Ωk(X):

(α, β) :=

∫

X

α ∧ ∗β =

∫

X

〈α, β〉 · τ

Notice that (α, β) = (β, α) because 〈 , 〉 is symmetric.
Also,

(∗α, ∗β) =

∫

X

∗α ∧ ∗ ∗ β = (−1)k(n−k)

∫

X

∗α ∧ β =

∫

X

β ∧ ∗α = (β, α) = (α, β).

Finally (α,α) ≥ 0, with equality iff α = 0, as 〈, 〉 is a positive definite pairing and τ is everywhere
positive w.r.t the orientation onX. So ( , ) is a positive definite, non-degenerate, symmetric bilinear
form on Ωk(X).

We now define d∗ : Ωk −→ Ωk−1 as

(−1)k∗−1d∗ = (−1)k+(k−1)(n−k+1) ∗ d ∗ .

When n is even, we get d∗ = − ∗ d∗.
Note: d∗ is defined locally.
Key Fact: Let X be compact. For α ∈ Ωk−1, β ∈ Ωk, we have

(dα, β) = (α, d∗β)

Proof. By definition

(dα, β) =

∫

X

dα ∧ ∗β

Also,

(α, d∗) =

∫

X

α ∧ (−1)k ∗ ∗−1d ∗ β = (−1)k
∫

X

α ∧ d(∗β)

Now,
∫

dα ∧ (∗β) + (−1)k−1

∫

α ∧ d(∗β) =

∫

d(α ∧ ∗β) = 0,

by Stokes’ theorem. �

Remarks:
d does not see the metric.

∗ sees the metric, but works fiber by fiber.
d∗ sees the metric and its derivatives, and the derivatives of your k-form
( , ) is honestly global.
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3. The Laplacian and the Hodge theorem

We define the Laplacian ∆d : Ω
k −→ Ωk by

∆d := dd∗ + d∗d

Note that if f, g ∈ Ωk(X), then

(f,∆dg) = (f, dd∗g) + (f, d∗dg)

= (d∗f, d∗g) + (df, dg).

In particular, (f,∆df) ≥ 0 and we have equality iff df = 0 and d∗f = 0. So, we get a map

Ker(∆ : Ωk(X) −→ Ωk(X)) −→ {closed k-forms} ։ Hk
DR(X).

Theorem (Hodge):

Ker(∆ : Ωk(X) −→ Ωk(X)) ∼= Hk
DR(X).

Injectivity is not hard (problem set 7, problem 2), but surjectivity is!
We won’t prove this. Instead, I’ll give you some intuition, and I’ll tell you what is true.

4. The intuition for the Hodge theorem

Let

0 → V 0 → V 1 → · · · → V n → 0

be a complex of finite dimensional vector spaces over R.
Let ( , ) be a positive definite inner product on V i. Then we can take about the adjoint map

d∗ : V k −→ V k−1, defined so that
This data gives maps d∗ : V k −→ V k−1 with (f, dg) = (d∗f, g).
Define ∆ := dd∗ + d∗d.

Theorem: Ker(∆ : V k −→ V k) ∼= Hk(V •) = Ker(d:V k
−→V k+1)

Im(d:V k−1−→V k)

Proof. Let Zk = Ker(d : V k −→ V k+1) and Bk = Im(d : V k−1 −→ V k).
Thus, Bk ⊂ Zk ⊂ V k.

Let Kk be the orthogonal component to Bk in Zk. Let B
k
be the orthgonal component to Zk

in V k. So, V k = Bk ⊕B
k
⊕Kk.

Thus, d is 0 on Bk and Kk and is injective on B
k
. If we consider d as a map B

k
→ Bk+1, then

it is an isomorphism, as B
k
is tranverse to the kernel of d, and Bk+1 is the image of d.

B
k

d
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Since this direct sum decompositions are orthogonal, the map d∗ is 0 on B
k+1

and Kk+1, and

maps to B
k
. The map d∗ : Bk+1 → B

k
is the adjoint of an isomorphism, so it is an isomorphism.

On B
k
, we have ∆ = d∗d, the composition of two isomorphisms, so it is an isomorphism. On

Bk, apply the same argument between ranks k and k − 1 to see that ∆ = dd∗ is an isomorphism.
On Kk, both d and d∗ vanish, so ∆ is 0 there.

So

Ker(∆) = Kk ∼=
Kk ⊕Bk

Bk
=

Zk

Bk
=: Hk(V •)

�

Notice that (∆f, g) = (f,∆g) so ∆ is self-adjoint and is, thus diagonalizable. Also, (∆f, f) =
(df, df) + (d∗f, d∗f) ≥ 0, so ∆ is positive semidefinite, and its eigenvalues must be ≥ 0. We just
saw that 0-eigenspace of ∆ on V k is isomorphic to Hk(V •).

In Problem Set 7, Problem 3, you will check that d and d∗ take the λ-eigenspace of V k to the
λ-eigenspace of V k±1, so V • =

⊕

V •

λ . You will see that V •

λ is exact for λ > 0.
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5. The truth

There is a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . with λi → ∞ such that ∆ : Ωk(X) −→
Ωk(X) has a finite dimensional λi-eigenspace. Every k-form is an infinite sum of eigenfunctions

η =
∑

wi

with the sum and all its derivatives uniformly, absolutely convergent.
The operators d and d∗ take the λ-eigenspace to the λ-eigenspace.
On the 0-eigenspace, d and d∗ are zero. For λ > 0, the resulting complex is exact.

6. Appendix: Why is the Hodge Theorem hard?

Added by David, and purely for the curious

The vector space Ωk(X) is infinite dimensional. If Ωk(X) was a Hilbert space, and d and d∗ were
bounded operators, this wouldn’t be too bad.

Let’s try putting the L2-norm on Ωk(X). Since we’ve already chosen a norm, this is at least
canonical. Now, Ωk(X) isn’t complete in the L2 norm. The left hand graph below shows a family
of smooth functions approaching a discontinuous function in the L2 norm.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

1

2

3

4

We could complete Ωk(X) in the L2 norm. But differential operators don’t extend continuously
to L2! The right hand side of the figure shows the derivatives of the functions on the left. The
height of the bump is growing like N , even as the width shrinks like 1/N , so the L2 norm is going
to infinity like N , and there is no L2 limit for the sequence of derivatives.

What we do instead is to create a whole sequence of topologies on Ωk(X), called the Sobolev
topologies. A sequence of smooth functions is convergent in the s-th Sobolev topology if all of
its derivatives up to order s are L2-convergent. The map ∆ then decreases s by 2. One must do
functional analysis on these spaces in order to establish that ∆ has the required eigenvalue structure
there. One then must prove that the resulting eigenfunctions actually are smooth k-forms.


