Obvious assertions for the week of January 7-14

- (1) Let X be a topological space and let \mathcal{E} be a sheaf on X. Let U be a open subset of X and let f and $g \in \mathcal{E}(U)$. Show that, if f and g represent the same element of the stalk \mathcal{E}_x for all $x \in U$, then f = g. Used on Jan 21 quiz
- (2) Let $X = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 2\}$. Let \mathcal{E} be the sheaf of continuous \mathbb{C} valued functions on X. Show that $U \mapsto \exp(\mathcal{E}(U))$ is not a sheaf of \mathbb{C} -valued functions on X.
- (3) Let X be a topological space and let \mathcal{E} be a presheaf on X. Let F be the set of pairs (U, f) where U is an open set containing x and $f \in \mathcal{E}(U)$. Define a relation \sim on F by $(U_1, f_1) \sim (U_2, f_2)$ if there exists some $(U_3, f_3) \in F$ with $U_3 \subset U_1 \cap U_2$ and $\rho_{U_3}^{U_1}(f_1) = f_3 = \rho_{U_3}^{U_2}(f_2)$. Show that \sim is an equivalence relation. Used on Jan 21 quiz
- (4) Let X be a topological space and \mathcal{E} a sheaf on X. Let x be a point of X and let \mathcal{V} be a basis of neighborhoods of x. (Meaning that the elements of \mathcal{V} are open sets containing x and, for any open set $U \ni x$, there is some $V \in \mathcal{V}$ with $x \ni V \subseteq U$.) Show that $\varinjlim_{v \in \mathcal{V}} \mathcal{E}(V)$ is isomorphic to the stalk \mathcal{E}_x .

Obvious assertions for the week of January 14-21

(5) Let X be a topological space, and let E be a set. Let \mathcal{E} a presheaf of E-valued functions on X. For every open subset U of X, define $\mathcal{E}^+(U)$ to be the set of function $f: U \to E$ so that, for every $x \in U$, there is an open set V with $x \in V \subset U$ so that $f|_V \in \mathcal{E}(V)$.

Show that \mathcal{E}^+ is a sheaf. Used on Jan 21 quiz

Obvious assertions for the week of January 21-28

- (6) Let A be a commutative ring. Recall that the Zariski topology on Spec A is defined as follows: For any $S \subseteq A$, we define $V(S) = \{ \mathfrak{p} \in \text{Spec } A : S \subset \mathfrak{p} \}$. The V(S) are the closed sets of the Zariski topology. Show that this defines a topology on Spec A.
- (7) Let A and B be commutative rings and let $\phi : A \to B$ be a map of commutative rings. Let \mathfrak{p} be a prime ideal of B. Show that $\phi^{-1}(\mathfrak{p})$ is a prime ideal of A.
- (8) Let A and B be commutative rings and let $\phi : A \to B$ be a map of commutative rings. Show that the map $\mathfrak{p} \to \phi^{-1}(\mathfrak{p})$ is a continuous map $\operatorname{Spec} B \to \operatorname{Spec} A$. (You may assume that $\phi^{-1}(\mathfrak{p})$ is prime.)
- (9) Let A be a commutative ring and let f be an element of A. Show that the natural map Spec $f^{-1}A \to \operatorname{Spec} A$ is an inclusion with image $D(f) = \{\mathfrak{p} : f \notin p\}$.
- (10) Let A be a commutative ring. Recall that the distinguished open D(f) is $\{\mathfrak{p} \in \text{Spec } A : f \notin \mathfrak{p}\}$. Show that $D(f) \cap D(g) = D(fg)$.