Hints for this problem set are on the rear of the page. I think this is pretty hard, but doable, without them.

Problem 1 In this problem, we'll investigate the relationship between partitions of unity and sheaf cohomology vanishing. Let (X, \mathcal{O}) be a locally ringed space.

We say that (X, \mathcal{O}) and let U_i be a locally finite cover of U_i . We define a **strong partition of unity** subordinate to U_i to be functions $\phi_i \in \Gamma(\mathcal{O})$ such that $\sum \phi_i = 1$ and, if $z \in X \setminus U_i$, then ϕ_i vanishes in the stalk \mathcal{O}_z . We will say that ϕ_i is a **weak partition of unity** subordinate to U_i if the same holds but we only require ϕ_i to lie in the maximal ideal $\mathfrak{m}_z \subset \mathcal{O}_z$. (These are not standard terms.) Clearly, strong partitions of unity implies weak partitions of unity.

(a) Suppose that X is paracompact (every open cover has a locally finite refinement) and regular (for any point z and any closed set K, there is are open sets $V \ni z$ and $W \supset K$ with $V \cap W = \emptyset$). Suppose that every locally finite cover of X has a weak partition of unity. Show that every open cover of X has a locally finite refinement with a strong partition of unity.

From now on, suppose that every open cover of X has a locally finite cover with respect to which there is a strong partition of unity.

- (b) Suppose that $\mathcal{B} \to \mathcal{C}$ is a surjection of sheaves of \mathcal{O} -modules. Show that $\Gamma(\mathcal{B}) \to \Gamma(\mathcal{C})$ is a surjection.
- (c) Let \mathcal{A} be an arbitrary sheaf of \mathcal{O} -modules. Show that $H^1(\mathcal{A}) = 0$. You may assume that \mathcal{A} injects into an injective \mathcal{O} -module \mathcal{I} .
- (d) Let \mathcal{A} be an arbitrary sheaf of \mathcal{O} -modules. Show that $H^q(\mathcal{A}) = 0$. You may assume that every sheaf of \mathcal{O} -modules injects into an injective sheaf of \mathcal{O} -modules.

Problem 2 Given a map of complexes $A^{\bullet} \xrightarrow{f} F = B^{\bullet}$, define the cone complex $\operatorname{Cone}(A^{\bullet} \xrightarrow{f} B^{\bullet})$ where $\operatorname{Cone}(A^{\bullet} \to B^{\bullet})^{q} = A^{q+1} \oplus B^{q}$ and where the map $A^{q+1} \oplus B^{q} \to A^{q+2} \oplus B^{q+1}$ is given by $\begin{pmatrix} \partial & (-1)^{q} f \\ 0 & \partial \end{pmatrix}$. We have obvious maps of complexes $B^{\bullet} \xrightarrow{i} \operatorname{Cone}(A^{\bullet} \xrightarrow{f} B^{\bullet}) \xrightarrow{j} A^{\bullet+1}$.

(a) Abbreviating Cone $(A^{\bullet} \xrightarrow{f} B^{\bullet})$ to K^{\bullet} , show that we have a long exact sequence

$$\cdots \to H^0(B^{\bullet}) \xrightarrow{i^*} H^0(K^{\bullet}) \xrightarrow{j^*} H^1(A^{\bullet}) \xrightarrow{f^*} H^1(K^{\bullet}) \xrightarrow{i^*} H^2(A^{\bullet}) \to \cdots,$$

where we have labeled each arrow by the map of complexes which induces it. Note that $H^q(A^{\bullet+1}) = H^{q+1}(A^{\bullet})$, so j^* maps $H^q(K^*) \to H^{q+1}(A^{\bullet})$.

Now suppose that we have three complexes A^{\bullet} , B^{\bullet} and C^{\bullet} and maps of complexes $A^{\bullet} \xrightarrow{\alpha} B^{\bullet}$ and $B^{\bullet} \xrightarrow{\beta} C^{\bullet}$ such that $0 \to A^q \xrightarrow{\alpha} B^q \xrightarrow{\beta} C^q \to 0$ is exact for all q.

(b) Construct a map of complexes $\operatorname{Cone}(A^{\bullet} \xrightarrow{\alpha} B^{\bullet}) \to C^{\bullet}$ which induces isomorphisms $H^q(\operatorname{Cone}(A^{\bullet} \xrightarrow{\alpha} B^{\bullet})) \cong H^q(C^{\bullet})$ for all q.

Combining the two problems, we have constructed a long exact sequence

$$\cdots \to H^0(A^{\bullet}) \to H^0(B^{\bullet}) \to H^0(C^{\bullet}) \to H^1(A^{\bullet}) \to H^1(B^{\bullet}) \to H^1(C^{\bullet}) \to$$

Hint for 1(a): Let our cover be $X = \bigcup U_i$ and let $K_i = X \setminus U_i$. For every $z \in X$, choose a $U_i \ni z$ and choose disjoint opens $V_z \ni z$ and $W_z \supset K_i$. Consider show that weak partitions of unity subordinate to a locally finite refinement of V_z are strong partitions of unity with respect to U_i .

Hint for 1(b): Lift $c \in \Gamma(\mathcal{C})$ to $b_i \in \mathcal{B}(U_i)$. After refining appropriately, take a strong partition of unity ϕ_i subordinate to U_i . Show that $\phi_i b_i$ extends to an element of $\Gamma(\mathcal{B})$, and that $\sum \phi_i b_i \mapsto c$.

Hint for 1(c): Use part (b) and play with the injection $A \to \mathcal{I}$.

Hint for 1(d): Play with the injection $\mathcal{A} \to \mathcal{I}$.