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March 16 – Čech Cohomology 29
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January 7 – Introduction. In this course, we will learn to work with schemes. (We will
also learn sheaf cohomology, but more about that after March Break.) I’m going to steal a
brilliant comment by Allen Knutson on Mathoverflow1.

One of the wholly unnecessary reasons that schemes are regarded with such
fear by so many mathematicians in other fields is that three, largely orthog-
onal, generalizations are made simultaneously.

Considering a “variety” to be Spec or Proj of a domain finitely generated
over an algebraically closed field, the generalizations are basically

(1) Allowing nilpotents in the ring.
(2) Gluing affine schemes together.
(3) Working over a base ring that isn’t an algebraically closed field (or even

a field at all).

As Ravi Vakil mentions in the comments, we should also add

(4) Working with prime ideals, rather than maximal ideals.

We saw the pain of not being able to talk about nilpotents when we talked about Bezout’s
theorem, and had to talk about counting intersection points with multiplicity, or when we
had to distinguish between naive and scheme theoretic fiber length. With schemes, we will
be natively allowed to think about nilpotent elements of rings as functions on schemes. The
downside is that we will have to give up on checking equality of functions point by point: A
nilpotent function on a scheme X is zero at every point of X, but is not the zero function.

With schemes, we will no longer have to embed our spaces in affine or projective space;
we will be able to directly glue two schemes together to form another scheme. This does
give us some new schemes – not all schemes are quasi-projective. And non-quasi-projective
schemes are not bizarre or pathological, they really do come up. That said, they are a bit of
a specialty : I would guess that 90 percent of algebraic geometry papers or talks include no
such examples. The real gift here is the freedom to talk about the glued object before proving
that it is quasi-projective. We can directly build the Grassmannian by gluing together linear
charts; we can define the normalization of a variety by normalizing each chart; we can talk
about tangent and cotangent bundles by gluing together local trivializations.

Working with a non-algebraically closed base field is obviously important in number theory:
If we want to talk about rational points on elliptic curves (say), we need to be able to think of
those elliptic curves are schemes over the field Q. The curves x3 + y3 = z3 and x3 + y3 = 9z3

are isomorphic over C, but the first has only a few trivial points over Q and the second has
infinitely many. More importantly, we want to be able to make geometric constructions and
be able to talk about the results of those constructions as schemes over Q once again. All
of that said, I should acknowledge that, rather than working with schemes over Q, I often
find it easier to think over Q and keep track of the Gal(Q̄/Q) action.

Finally, the switch from maximal ideals to prime ideals. This is forced on us by functori-
ality: Think about the inclusion k[x] ↪→ k(x). The maximal ideal (0) of k(x) pulls back to
a prime ideal of k[x], not a maximal ideal. This is very important for number theorists: We
want to be able to take a curve X over Q and switch view points to think about a surface
over the base SpecZ. The rational points on X then give rise to entire curves in X . If we
only talked about maximal ideals, we wouldn’t be able to talk about the rational points of X

1http://mathoverflow.net/questions/28496/what-should-be-learned-in-a-first-serious-schemes-
course/28594#28594
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once we switched viewpoints to study X . There are also a number of places in more classical
settings where thinking in terms of prime ideals provides an extra conceptual clarity. I’ll try
to point these examples out when they arise.

January 9 – Concrete sheaves. Today we introduced the notion of a concrete sheaf .

Definition. Let X be a topological space, E a set. A sheaf of E-valued functions on X is
the data, for every open set U ⊂ X, of a set set E(U) of functions U → E such that

(1) If U ⊂ V are subsets of X and f ∈ E(V ), then f |U ∈ E(U).
(2) If V =

⋃
Ui is an open cover of V and f : V → E is a function such that f |Ui

∈ E(Ui)
for all i, then f ∈ E(V ).

One can require as the zeroth condition that the empty function ∅ → E belongs to E(∅).
Next, we listed a some examples.

• We can set E to be a topological space and E(U) to be the set of continuous functions
U → E.
• We can take E to be a smooth manifold and E(U) = C∞(U).
• For k an algebraically closed field, let X be a quasi projective variety over k. Then

for E = k, we can take E(U) to be the set of regular functions on U .
• Let X be a smooth curve over k and D a divisor on X. Letting E = k ∪ {∞}, we

can consider E(U) = O(D)U .
• Let E be a topological space and φ : E → X a continuous function. Then we can

consider E(U) = {σ ∈ C0(U) : U → E | φσ = id}.
In addition, we consider the non-example of constant functions on a Hausdorff topological

space, say X = R.
Finally, we recalled the definition of a basis for a topological space and pointed out that it

is a homework exercise to show that a sheaf of functions defined on a basis can be extended
to all the open sets in a topological space.

January 12 – Abstract sheaves. Last time: Defined “concrete” sheaves, i.e. sheaves of
E-valued functions for some set E.

These are good enough for many applications, but not quite good enough for us... Namely,

(1) we must deal with nilpotents
(2) we want to deal with e.g. differential forms as objects on our original space X.

Definition. Let X be a topological space. A sheaf E on X is the following data:

• for each open U ⊂ X, a set E(U)
• for each pair of nested opens U ⊂ V a map

ρVU : E(V )→ E(U),

such that

(1) for any open U ⊂ X
ρUU = id : E(U)→ E(U),

and for any nested opens U ⊂ V ⊂ W

ρWU = ρVU ◦ ρWV : E(W )→ E(U).
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(2) if {Ui} is an open cover of V , and we pick fi ∈ E(Ui) that agree on intersections, i.e.

ρUi
Uij

(fi) = ρ
Uj

Uij
(fj) where Uij := Ui ∩ Uj,

then there exists a unique g ∈ E(V ) that satisfies ρVUi
(g) = fi.

There is now no set E (of “values” of the “functions” inside each E(U)). But it is still
good intuition to think of each E(U) as “sections over U” (so, maps out of U to some set E)
and the maps ρVU as “restriction maps”.

Condition (1) is the “Presheaf condition” i.e. it says that E is a contravariant functor
from the poset-category Top(X) of open subsets of X under inclusions, to the category Set
of sets.

Condition (2) is the “local gluability” condition, i.e. we can “glue together” all the sections
fi on local patches Ui to get a section g on all of V , and this section g is uniquely determined
by the fi. Some sources (e.g Hartshorne, p. 61) separate the “uniqueness” and “existence”
into two separate statements (conditions (3) and (4) in Hartshorne, respectively).

Example. On a smooth manifold

• differential k-forms is a sheaf.
• closed k-forms is a sheaf.
• exact k-forms is not a sheaf. (it is a presheaf, whose sheafification is closed k-forms)

[slight digression]
Question: Is there an example of a presheaf where the uniqueness of gluing fails?
Answer: (dumb example) On any space X, let E(X) = {±1}, and for any proper (open)

subset U ⊂ X let E(U) = {1}. The restriction maps ρ are all determined by this data,
and for any cover {Ui} of X by proper open subsets, the local sections 1 ∈ E(Ui) will glue
together to give either +1 or −1 ∈ E(X) as a global section.

[end digression]

Definition. Let E be a sheaf on X. The stalk Ex of E at a point x ∈ X is defined as the
direct limit (also known as injective limit or colimit)

Ex = lim−→
U3x
E(U)

taken over all opens U ⊂ X containing x. This means

Ex =
⊔
U3x

E(U)/ ∼,

with equivalence relation ∼ defined by

(f, U) ∼ (g, V ) if ∃W ⊂ U ∩ V such that ρUWf = ρVWg ∈ E(W ).

? Obvious Assertion: the above defines an equivalence relation
? Obvious Assertion: we get the same stalks if we take the limit only over a basis of opens

(e.g. distinguished opens in the Zariski topology)

Definition. A germ is an equivalence class (f, U)x in Ex.

Example. On X = SpecC[x, y]/(xy), the regular functions f = 0 and g = y are equal in
the stalk at the point (1, 0), but are not equal in the stalk at (0, 1).
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How to turn any sheaf E back into a concrete sheaf:
Now that we have stalks, let

E =
⊔
x∈X

Ex .

Any f ∈ E(U) determines an (honest) function σ(f) : U → E sending x 7→ (f, U)x .
Fact: This σE is a sheaf of E-valued functions on X, which is isomorphic to E .

Implicit claims here:

• If f, g ∈ E(U) and σ(f) = σ(g), then f = g
• If U ⊂ V and f ∈ E(V ), then σ(ρVUf) = σ(f)|U .
• If {Ui} covers V and fi ∈ E(Ui) satisfy σ(fi)|Uij

= σ(fj)|Uij
, then there exists g ∈ E(V )

such that σ(g)|Ui
= σ(fi).

Example. X = SpecC[x, y]/(xy, y2) = SpecA
The functions 0 and y are equal in the quotient ring A/p for every p ∈ SpecA, but they are
not equal in the localization Ap at p = (x, y).
(Moral: In a ring with nilpotents, a regular function may not be uniquely determined by its
values at all points, but it will be determined uniquely by its values in all stalks.)

January 14 – Sheafification. Today, we first introduce the notion of sheafification .
Let X be a topological space, let E be a set, and let E be a concrete presheaf of E-valued
functions on X. For an open set U ⊆ X, let E+(U) be the collection of functions f : U → E
such that for all x ∈ U , there exists an open neighbourhood V of x with V ⊆ U such that
f |V ∈ E(V ). The sheaf U 7→ E+(U) is the sheafification of the concrete presheaf E .

For a general presheaf E on a topological space X, recall that the stalk at the point
x ∈ X is the direct limit Ex = lim−→U3x E(U). Define E =

⊔
x∈X Ex. For each open set

U ⊆ X, one may regard E(U) as a subcollection of functions U → E, so there is a map
E(U) → {functions U → E}; denote the image by F(U). Then, U 7→ F(U) is a concrete
presheaf, and hence we can sheafify as before.

We next discuss maps of sheaves . Let E ,F be sheaves on a topological space X, then
a map of sheaves ϕ : E → F is a collection of maps ϕU : E(U) → F(U), one for each open
set U ⊆ X, such that the following diagram commutes:

E(U) E(V )

F(U) F(V )

ρUV

ϕVϕU

ρUV

where the ρUV ’s denote the restriction maps in the appropriate sheaves. Consequently, we
can define the image Im(ϕ) to be the sheafification of the presheaf U 7→ ϕU(E(U)).

Now, if E ,F are sheaves of abelian groups and ϕ : E → F is a map of sheaves of abelian
groups (that is, ϕ : E(U) → F(U) is a morphism of abelian groups for every U ⊆ X open),
then we can define the cokernel CoKer(ϕ) to be the sheafification of the presheaf U 7→
F(U)/ϕ(E(U)). Furthermore, we can define the kernel Ker(ϕ) to be the presheaf U 7→
ker(ϕU), which is in fact a sheaf (that is, there is no need to sheafify).

January 16 – Sheaves as an abelian category. At the end of the previous lecture, we
defined the kernel , cockerel and image of a map of sheaves. Today we stated that sheaves
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are an abelian category. Informally, this means that you can treat them like modules. Here
are some specific ways that is true:

The universal property of the kernel: If we have C→ A
φ−→ B so that C→ B is 0,

then there is a unique map C→ ker(φ) so that the following diagram

C

��

// A
φ // B

ker(φ)

<<

is commutative.

The universal property of the cokernel: If A
φ−→ B → F have A → F is 0, there is

a unique map coker(φ)→ F so that the following diagram

A
φ // B

##

// F

coker(φ)

OO

is commutative.

The key property of images Give a map φ : A→ B, we have

Im(φ) ∼= Ker(B→ Coker(φ)) ∼= Coker(Ker(φ)→ A).

Injectivity: φ : A −→ B is injective ⇐⇒ ker(φ) = 0 ⇐⇒ ϕU is injective for all U .

Surjectivity φ : A −→ B is surjective ⇐⇒ coker(φ) = 0 ⇐⇒ All maps on stalks are
surjective ⇐⇒ For any U ⊆ X open, any x ∈ U , any g ∈ B(U), there exists V , x ∈ V ⊆ U
and f ∈ A(V ) such that φV f = ρUV g.

Exactness A
α // B

β // C is exact ⇐⇒ The sequence of the stalks is exact. ⇐⇒
For any U ⊆ X open, any x ∈ U , any g ∈ B(U) such that β(g) = 0, there exists V ,
x ∈ V ⊆ U and f ∈ A(V ) such that g(f) = ρUV g.

January 21 – Schemes. We introduced the concept of schemes.

Definition. A scheme is a topological space X equipped with a sheaf of commutative rings
such that X locally looks like SpecA for various commutative rings A.

As a set, SpecA is the set of prime ideals of a commutative ring A. A map of rings
φ : A→ B induces a map SpecA← SpecB given by φ−1(p)←[ p.

Remark. This relies on the obvious claim that the pre image of a prime ideal is prime.

Definition. The Zariski topology on SpecA is given as follows: For any S ⊆ A, set V (S) =
{p ∈ SpecA : S ⊆ p}. We say that a set T is closed if T = V (S) for some S.

Distinguished open sets of SpecA have the form D(f) = {p|p 63 f}. D(f) is homeomorphic
to Spec f−1A.

Definition. We define a sheaf called O on SpecA given by O(D(f)) = f−1A. We extend
this definition to all open sets by gluing.
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January 23 – Regular function form a sheaf. The goal of today’s class is that a sheaf
of rings O on SpecA is actually a sheaf.

Let A be a commutative ring. What do we need to check? Let D(f) be a distinguished
open of SpecA. For D(f) = ∩D(hi), we are given ci ∈ h−1

i A such that ci = cj in (hihj)
−1A.

We ultimately want to show that there exists a unique a ∈ f−1A such that a = ci for all i in
h1
iA.
More generally, let M be a A- module, and replace every red A with M . Replacing A by

f−1A and M by f−1M , we can assume that f is a unit, which may as well be 1.
To summarize, we want to show the below theorem:

Theorem. Assume SpecA = ∪D(hi), given ci ∈ h−1
i A such that ci = cj in (hihj)

−1A, there
exists unique a in A such that a = ci in h−1

i A.

Proof.
∪D(hi) = SpecA ⇐⇒ ∀i, no prime contains hi

The above condition is equivalent to < hn1
1 , · · · , hnr

r >= (1) for any n1, n2, . . . , nr.
Uniqueness : Suppose there exists a, a′ ∈ M such that a = a′ in h−1

i for all i. Then,
hni
i (a− a′) = 0 for some ni, and because of (a), this implies that a = a′: let

∑
bih

ni
i = 1 for

some ni. Then,
∑
bih

ni
i (a− a′) = 0 ⇐⇒ 1 · (a− a′) = 0 ⇐⇒ a = a′.

Now we only need to show the existence.
Existence : Let ci = ai/h

ni
i with ci ∈ h−1

i M , ai ∈M such that ci = cj in (hihj)
−1M for all

i, j. Then, (hihj)
mij(aih

nj

j −ajh
ni
i ) = 0 for some mij. Take finitely many h1, · · · , hr such that

〈h1, · · · , hr〉 = 1. The ideal is to pick a large enough N that we can take a“ = ”
∑
bih

N
i

ai
h
ni
i

where
∑
bih

N
i = 1.

Take N = max{ni} + max{mij} works. Choose bi such that
∑
bih

N
i = 1. Set a =∑

biaih
N−ni
i . For any k, we compute that

ahN+nk
k =

∑
i

biaih
N−ni
i hN+nk

k =
∑
i

biakh
N
i h

N
k = akh

N
k .

So a = ak/h
nk
k in h−1

k A, as desired. �

January 26 - Morphism of Schemes, start of discussion of Proj. Recall from last time
that a scheme is a pair (X,O), where X is a topological space, O is a sheaf of commutative
rings, and (X,O) locally looks like Spec(A) for various commutative rings A. We define a
map of scheme as follows:

Definition. A map of schemes: φ : (X,A)→ (Y,B) is the data such that

• φ : X → Y is a continuous map.
• For every V ⊂ Y , there is a map of rings φ∗V : B(V )→ A(φ−1(V )) such that

(1) φ∗ commutes with restriction;
(2) φ∗ : Bφ(x) → Ax is a local map.

Alternatively, the condition (2) may be replaced by the following:
(2)′ For any affine V ⊂ Y and affine U ⊂ φ−1(V ), then map (U,A|U)→ (V,B|V ) is the one
induced by the map of rings B(V )→ A(U).

One way to get schemes from other schemes is by taking open subsets: If (X,A) is a
scheme, and U ⊂ X is open, then (U,A) is a scheme, and the inclusion map U ↪→ X is a
map of schemes.



8 ALGEBRAIC GEOMETRY II – THE DAILY UPDATE

Next we talked about open sets. If S is a ring, I is an ideal, V (I) = {p ∈ SpecS : p ⊇ I},
then SpecS\V (I) is an open set. We pointed out that Spec k[x1, · · · , xn]\V (〈x1, · · · , xn〉) is
a non-affine scheme for n > 2.

Lastly we brought up the notion of graded rings. A Z-graded ring is a ring S equipped
with a direct sum decomposition

S =
∞⊕

n=−∞

Sn, SiSj ⊆ Si+j.

Similarly, a Z>0-graded ring is a ring satisfying the same conditions with S =
⊕∞

n=0 Sn. The
geometric significance of grading over ground field k is that it gives a group action. More
explicitly, we said that the grading on a k-algebra S is equivalent to the action Spec k[u, u−1]
of on SpecS.

January 28 - Construction of Proj. For a commutative k-algebra S, a Z grading on S
is equivalent to an action of G := Spec k[u, u−1] on SpecS. See the problem set for details.
The degree 0 part of S is the functions which are invariant for the group action, so we can
think of S0 roughly as function on the quotient.

Suppose that S is Z≥0 graded. We define S+ =
⋃
j>0 Sj. Intuitively, we want ProjS to be

S \ V (S+), modulo scaling.
In actuality, we build ProjS from a collection of open patches. For each homogenous f ∈

S+, one of the patches on ProjS will be Spec(f−1S)0. Here Spec f−1S is a distinguished open
in SpecS and Spec(f−1S)0 should be thought of as the quotient. Note that

⋃
f∈S+

D(f) =

SpecS \ V (S+).
We could simply define ProjS by gluing together the patches Spec(f−1S)0. Specifically,

if fi ∈ Si and fj ∈ Sj, glue Spec(f−1
i S)0 to Spec(f−1

j S)0 by gluing the distinguished opens

Spec(f ij/f
j
i )−1(f−1

i S)0 and Spec(f ji /f
i
j)
−1(f−1

j S)0.
We present another way of describing the same result. We build the underlying topological

space of ProjS directly. The points of ProjS are homogenous prime ideals in SpecS\V (S+),
and the topology is inherited from the Zariski topology on SpecS. Implicit in this approach
is the claim that the homogenous primes of f−1S are in bijection with the primes of (f−1S)0;
see the homework. One then defines a sheaf of regular functions on this set by defining the
regular functions on {homogenous primes of f−1S} to be (f−1S)0.

January 30 - Products over Fields. For today, all schemes are over a field k - we’re
going to discuss products over k. First, let’s consider the affine case.

LetX = Spec k[x1, . . . , xm]/〈f1, . . . , fr〉 = SpecA and Y = Spec k[y1, . . . , yn]/〈g1, . . . , gs〉 =
SpecB. We define the product to beX×Y = Spec[x1, . . . , xm, y1, . . . , yn]/〈f1, . . . , fr, g1, . . . , gs〉.
We might worry about whether or not this definition depends on the choice of generators,
but in fact we have X × Y = Spec(A⊗k B).2

For k-algebras A,B, we define SpecA ×Spec k SpecB = Spec(A ⊗k B). This construction
makes sense for affine schemes, and in general, X =

⋃
i SpecAi, Y =

⋃
i SpecBj and we

get X ×Spec k Y by gluing Spec(Ai ⊗k Bj). We should, however, worry about whether the
gluing conditions are satisfied (this is done in Hartshorne, and amounts to checking formal

2Remember that if A,B are R-modules for some commutative ring R, then A ⊗R B is an R-module on
generators a ⊗ b with the relations (a1 + a2) ⊗ b = a1 ⊗ b + a2 ⊗ b, a ⊗ (b1 + b2) = a ⊗ b1 + a ⊗ b2 and
r(a ⊗ b) = ra ⊗ b = a ⊗ rb. If A, B are commutative R-algebras, then A ⊗R B is a commutative ring and
(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2).
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properties of tensor products), and whether or not this definition depends on the choice of
cover.

For the latter, note that we can define the scheme-theoretic product by the usual universal
property: if f : T → X, g : T → Y , we want a scheme X ×k Y and a unique map
φ : T → X ×k Y such that the following diagram commutes:

T

��

))##
X × Y //

��

X

Y

If P1 and P2 are two such objects, a standard argument shows that P1 and P2 must be
isomorphic. For a sketch of existence, note that when X and Y are affine, we obviously have
the dual diagram in the category of commutative k-algebras:

R

A⊗B

cc

Aoo

ii

B

OO

YY

and we need only patch these together – Hartshorne goes into the details.
The next thing we want to introduce is the notion of a functor of T -points for a fixed

scheme T . This is a functor from the category of schemes to the category of sets.

X 7→ Hom(T,X) =: X(T )

(X
f−→ Y ) 7→ (g 7→ f ◦ g)

An example is:

Example. If k = k and X is finite type over k, then (SpecA)(k) = Homk(A, k) =
MaxSpecA.

A slightly more interesting example is:

Example. Consider X = SpecR[t]; then X(SpecR) = HomR(R[t],R) = R. On the other
hand, X(SpecC) = HomR(R[t],C) = C.

From the universal property of products, we see that for any T , X(T )×Y (T ) = (X×Y )(T ).
If we have a map G×G→ G, we get maps G(T )×G(T )→ G(T ). So an action G×X → X
gives an action G(T )×X(T )→ X(T ).

A warning: the map on underlying sets from the underlying set of X × Y to the product
of the underlying set of X and the underlying set of Y is not an equality. For instance:

Example. Let X = Y = SpecR[t]. The closed points of X×Y are equivalence classes in C2,
where equivalence is given by conjugation. Then (t2+1) ∈ SpecR[t] and (u2+1) ∈ SpecR[u],
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but the ideal 〈t2 + 1, u2 + 1〉 ∈ SpecR[t, u] is not prime. The ideals 〈t− u, t2 + 1, u2 + 1〉 and
〈t+ u, t2 + 1, u2 + 1〉 correspond to the sets {(i, i), (−i, i)} and {(i,−i), (−i, i)} respectively.
More generally, for every irreducible polynomial f(t, u), we get a point in SpecR[t, u] and
we see that we get (in the scheme-theoretic product) uncountably many points lying over a
single point in the set-wise product.

February 4 - Assorted conditions on maps. Today we discussed: closed subschemes,
finite maps and maps of finite type.

In the affine worlds we want closed subschemes of SpecA to correspond to ideals of A.
For example, if A = k[x], then

Spec k ⊂ Spec
A

(x2)
⊂ SpecA

are closed subschemes.

Definition. If (X,O) is a scheme, a closed subscheme (Z,A) is a scheme with a map (φ, φ#)
to (X,O) such that φ is a closed embedding and φ# is surjective.

Since φ# is surjective, it gives us an ideal sheaf IZ on X, where

IZ(U) = Ker(O(U)→ A(φ−1(U))).

It is a nontrivial theorem that the closed subschemes of SpecA correspond exactly to
ideals of A: One might imagine that there could be some other closed subschemes which
only locally come from ideals without doing so globally. Hartshorne proves this theorem as
Exercise II.3.10.(b); a better proof can be found as Corollary II.5.10.

Maps of finite type are the scheme-analogues of maps of rings A→ B inducing a finitely
generated A-algebra structure on B. Exercise II.3.1 shows that even if this condition is
defined for a particular cover by affine schemes, it still holds for any affine subscheme. Maps
of finite type have finite dimensional fibers and can be thought of as “finite dimensional
fibers in a really nice way”.

Finite maps are the scheme-analogues of maps of rings A → B which endow B with the
structure of a finitely generated A-module (B is module-finite over A). Finite maps have
finite fibers. (The converse isn’t true though: Speck[u, u−1]→ Spec k[u] has finite fibers but
is not finite.) We spent some time talking about finite maps last term – see October 6, 8
and 10.

February 6 - Separated schemes. A good analogy that one should have for this topic is
that separated is like Hausdorff.

Example. Non-hausdorff manifold Take two disjoint copies of R and glue R∗ to R∗ by
the identity map. The space X = R∗ t R∗/ ∼ is a ”line with double point”, which is a
manifold which is not Hausdorff.

Example. Separated scheme In schemes, take Spec k[t] and Spec k[u] and glue the open
subsets D(t) and D(u) by k[t, t−1] ' k[u, u−1] by t 7→ u. (Note: if we glue the open subsets
by t 7→ u−1, we get P1, which is separated). The space we get, which can be also considered
as a ”line with double point”, is not separated. We will talk more about this example after
we give a precise definition.

Definition. Let X be a scheme over S. Then, X is separated if the diagonal embedding
X → X ×S X is a closed embedding.
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Note that usually, S is quite simple, such as Spec k or SpecZ. To check whether a scheme
X is affine, we can actually limit our attention to open covers:

Lemma. Let X = ∪Ui. Then, X is separated if and only if all the diagonal maps Ui∩Uj →
Ui × Uj are close embeddings

Proof. Ui × Uj’s form an open cover of X ×X. �

Now, with the above the definition, let’s look at our previous example.

Example.

(1) (Revisited) Let X be a line with double points. i.e., X = (Spec k[u])∪(Spec k[t]). For
convenience, let U = Spec k[u], and V = Spec k[v]. We see that U∩V ' Spec k[ss−1],
and the diagonal map is 4 : U ∩ V → U × V such that the ring map associated to
it sends t, u to s. This is not a closed embedding, because geometrically, U × V is a
rectangle, and U ∩ V is a diagonal without one point.

(2) Now we glue U , V as above along Spec k[s, s−1] with a map

U ∩ V → U × V
such that the associated ring map sends t 7→ s, and u 7→ s−1. The,n k[t, u] generates
Spec k[s, s−1], and our diagonal embedding is actually a closed embedding.

Facts

(1) Affine schemes are separated
(2) ProjS is also separated
(3) Open/closed subschemes of a separated scheme are also separated

The above facts motivate us to give a below definition:

Definition. A scheme is quasi-projective if it is an open subscheme of a projective scheme

So basically, one can get non-separated schemes by glueing/ taking quotients.
Places where one should say “separated”:
Suppose we have two schemes S and T and two maps φ, ψ : S → T . Suppose also that

there exists a dense subset Z of the underlying set of S such that φ|Z = ψ|Z . Then, we want
φ = ψ. In order for the condition φ|Z = ψ|Z to imply φ = ψ, we need both S and T to be
separated. (See exercise II.4.2.)

If X is separated, and U, V are affine open subschemes, then U ∩V is affine. (See exercise
II.4.3. You also might like to look back to Problem 5(a), Problem Set 6, from last term.)

February 9 – Proper schemes. Motivating analogy: proper for schemes is like compact
for topological spaces.

As with finite maps, X → Y proper implies proper fibers, but the converse does not hold.
(Take the same counterexample as before, i.e. the hyperbola projected to the affine line)

Definition. A map π : X → Y is proper if it is separated, of finite type, and universally
closed.

Definition. A map π : X → Y is universally closed if for all Y ′ → Y , the pullback
X ×Y Y ′ → Y ′ is closed , i.e. any closed subset Z ⊂ X ×Y Y ′ has closed image in Y ′.
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Z X ×Y Y ′ X

π′(Z) Y ′ Y

π′ π

Example. The map A1 = Spec k[x]→ Spec k is not proper.
Take Y ′ = Spec k[y]→ Spec k, then the pullback by this map has Spec k[x]× Spec k[y] =

Spec k[x, y] = A2:

Z = V (xy − 1) A2 A1

π′(Z) = {y 6= 0} A1 Spec k

π′ π

If we take Z to be the hyperbola cut out by xy − 1, then the image π′(Z) will be A1 with
the origin removed, which is not closed in A1.

Remark. π′ fails to be closed because Z has points “running off to infinity” in the X-fibers.

Example. The map P1 = Proj k[x0, x1]→ Spec k is proper.
We do not prove this, but we observe that the same setup as above does not disprove

properness: if we identify A1 with the affine open U0 = {[x0 : x1]|x0 6= 0} = {[1 : x]}, then
the equation xy − 1 = (x1/x0)y − 1 homogenizes to x1y − x0:

Z = V (x1y − x0) P1 × A1 P1

π′(Z) = A1 A1 Spec k

π′ π

Now the image π′(Z) is all of A1, since the point “at infinity” of P1 i.e. [x0 : x1] = [0 : 1] is
in the fiber above the origin y = 0.

Nice properties of properness

(1) Properness is local on the target Y , i.e. if U ⊂ Y and π : X → Y is proper, then
π−1(U) → U is proper, and conversely if {Ui} is an open cover of Y and each

π−1(Ui)→ Ui is proper, then X
π−→ Y is proper.

(2) Properness is stable under base change, i.e. if X
π−→ Y is proper and U → Y is

any map, then X ×Y U → U is proper. (This generalizes the first half of (1) where
U ↪→ Y is an inclusion)

(3) If X
π−→ Z is proper and factors through X

f−→ Y
g−→ Z, i.e. π = g ◦ f , then X

f−→ Y is

proper. (Y
g−→ Z does not have to be proper)

(4) Images of proper maps are closed. (universally closed implies closed)
(5) If S is a Z≥0-graded ring, finitely generated over S0, then ProjS → SpecS0 is proper.
(6) Finite maps are proper. (follows from Nakayama’s lemma)

(7) If Y is noetherian and X
π−→ Y has finite fibers (π is quasi-finite), then the following

are equivalent:
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• π is finite
• π is projecive
• π is proper.

Added by David: I tried to sketch a proof of (5) at the end of class and did a poor job
of it. Let’s try again. Our claim is local on Y ′, so we may take Y ′ = SpecT0. Let T be
the graded ring S ⊗S0 T0. Then X ×Y Y ′ = ProjT and we just need to prove that the map
ProjT → SpecT0 is closed. Let Z be a closed subset of ProjT , corresponding to a graded
ideal I =

⊕
j Ij in T . Then p ∈ SpecT0 is in the image of Z if and only if ProjT/pT is

nonempty. Now, ProjT/pT is nonempty if and only if (T/pT )j 6= 0 for all sufficiently large
j. Since an intersection of closed sets is closed, we simplest must show that the set of p for
which (T/pT )j is nonzero is closed. Since T is a finitely generated graded T0 algebra, Tj is
a finitely generated T0-module. Write Tj as the cokernel of φ : TM0 → TN0 , where we might
have to take M infinite if S0 is not noetherian, but N is finite. So we can think of φ as an
M × N matrix. We want to study the set of primes p for which the matrix φ mod p is not
of full rank. This set is Zariski closed, since it is cut out by the N ×N minors of φ.

February 11 – The valuative criterion. Let X → Spec k be a proper map, let V be a
k-scheme, and let U ⊂ V be an open dense subset. Let φ : U → X. We have the open

inclusion of U into V , and we get maps U
ψ−→ X×V that can project down to Spec k through

either X or V (as in the diagram below). Properness says ψ(U) projects to a closed subset

of V , so there are points of ψ(U) over all of V .

U
ψ

{{
X

��

X × Voo

��
Spec k Voo

The valuative criterion asserts that we can extend φ : U → X to a morphism φ : V → X.
For example, suppose V = Spec k[[t]], and U = Spec k((t)). If X = P2 = Proj k[x, y, z],

then we can map U → Spec k[x
z
, y
z
] ⊂ P2

k by e.g. x
z
7→ t−1 + 3t+ . . . and y

z
7→ 7t−1 + . . .. The

valuative criterion says that a solution in power series in t, t−1 can be extended to a solution
in power series in t.

In general, such an extension does not exist: consider the map P2 \ {(0 : 0 : 1)} → P1

given by (x : y : z) 7→ (x : y). This does not extend to all of P2, because local rings on
surfaces are not necessarily valuation rings.

Let us show the valuative criterion in the case R = k[[t]] and K = FracR = k((t)).
Consider:

SpecK
ψ

vv
X

proper

��

X ×SpecR SpecRoo

��
Spec k SpecRoo
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We can factor ψ as SpecK → ψ(SpecK)→ X×SpecRSpecR. There is a point q ∈ X×SpecR
over any t0 ∈ SpecR. Let p ∈ X be the image of q in X, and pass to an open affine SpecA
containing p. This allows us to draw the corresponding diagram on rings:

K

B
. �

>>

A //

α∗

22
φ∗

66

A[[t]]

<< <<

k[[t]]

OO

We need to show that φ∗(A) ⊂ k[[t]]. Suppose not: say φ∗(a) = t−n · (stuff), then α∗(a) =

t−n · (stuff). It follows that B ⊗R R/tR = B ⊗R k = 0, so there are no points of ψ(SpecK)
above t0, a contradiction. This completes the proof.

February 13 – Examples of gluing coherent sheaves. We discussed some examples of
gluing coherent sheaves.

Example 1: char k 6= 2, A = k[x, y]/(y2−x3 +x), Ω1
A = Adx+Ady/(2ydy−(3x2−1)dx).

We have two charts D(y) and D(3x2 − 1). We can talk about the elements dx
2y
∈ y−1Ω1

A and
dy

3x2−1
∈ (3x2 − 1)−1Ω1

A. On the overlap D(y(3x2 − 1)), we have dx
2y

= dy
3x2−1

. So the sheaf

property says that there should be some ω in Ω1
A which restricts to dx

2y
on D(y) and dy

3x2−1
on

D(3x2 − 1).
We can find ω explicitly. The condition that SpecA = D(y) ∪ D(3x2 − 1) means that y

and 3x2 − 1 must generate the unit ideal. Explicitly −9
2
y2x+ (3x2 − 1)(3

2
x2 − 1) = 1. So

ω = (−9

2
y2x+ (3x2 − 1)(

3

2
x2 − 1))ω = (−9

2
xy)

dx

2
+ (

3

2
x2 − 1)dy.

But we can also think about ω without having to explicitly find a formula for it.
We started Example 2: Take A = k[x, y]/(y2 − x3 + x), B = k[u, v]/(v2 + u3 − u).

Glue SpecA to SpecB. D(x) ' D(u). x = 1
u
, y = v

u2
, take Ω1

A glue to Ω1
B. We have

x−1Ω1
A ' u−1Ω1

B. Glue dx
2y

= du
2v

to get a sheaf Ω1. This shows how we can talk about 1-forms

as sections of a sheaf on non-affine spaces. A good exercise is to work out that the global
sections of this Ω1 are one dimensional. More generally, Problem 4 on Problem Set 10, from
Fall Term, works out the case of global 1-forms on a hyper elliptic curve of genus g and
shows that there is a g-dimensional space of them.

We decided to retreat to Example 1.5: Line bundles on P1. Let U = Spec k[u], V =
Spec k[v]. Glue D(u) to D(v), u to v−1. This gives P1. Let’s build a locally free sheaf C of
rank 1 on P1.

Let C on U be k̃[u]α and let C on V be k̃[u]β. Then

(k̃[u]α)(D(u)) = u−1k[u]α = k[u, u−1]α

(k̃[u]β)(D(v)) = v−1k[v]β = k[v, v−1]β
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We can glue β to umα for any m ∈ Z. Then

C(P1) = {(f, g)|f ∈ C(U), g ∈ C(V ) : f |U∩V = g|U∩V }.
Putting f = p(u)α and g = q(v)β for polynomials p and q, we have p(u)α = q(u−1)umα. So
p can be any polynomial of degree ≤ m, and q is its reversal. There is an m+ 1 dimensional
space of global sections. This is the line bundle O(m).

February 16 – Examples of the Proj construction. We discussed further examples of
gluing coherent sheaves.

Example 1: Recall the computation from the end of last time. Write P1 = U ∪ V where
U = Spec k[u] and V = Spec k[v]. Define a coherent sheaf C on P1 by C(U) = k[u] · α,
C(V ) = k[v] · β (the free modules on the generators α, β, respectively). Glue on U ∩ V by
β = umα.
This gives the global sections C(P1) = {(f, g), f ∈ C(U), g ∈ C(V ) : f |U∩V = g|U∩V }. Given
a global section (f, g), write f = p(u)α, g = q(v)β for polynomials p ∈ k[u], q ∈ k[v]. We
need to have p(u)α = q(v)β. Since the gluing on P1 is v = u−1, p(u)α = q(u−1) · umα. The
global sections Γ(C) are generated by {α, uα, · · · , umα} = {vmβ, vm−1β, · · · , vβ, β}.

Example 2: The same example, from a different perspective. Write P1 = Proj k[x, y]
with the cover U = Spec(y−1k[x, y])0 = k[x

y
], V = Spec(x−1k[x, y])0 = Spec k[ y

x
] and let

u = x
y
, v = y

x
.

The overlap is Spec((xy)−1k[x, y])0 = Spec k[x
y
, y
x
]. The coherent sheafO(m) (see Hartshorne)

is defined by by O(m)(U) = (y−1S)m = k[x
y
] · ym and O(m)(V ) = (x−1S)m = k[ y

x
] · ym. In-

side ((xy)−1S)m, we have xm = (x
y
)mym. In other words, this is the previous example with

β = x, u = x
y
, α = ym.

We now discuss some examples that show the subtleties of turning graded modules into
sheaves.

Example 3: Let S = k[x, y]/xy with the usual grading. SpecS is the union of the x- and
y-axes. So SpecS \ V (x, y) is the axes excluding the origin. We claim ProjS is simply two
points.

Let’s work through this from the definitions. We obtain ProjS by gluing Spec(x−1S)0

and Spec(y−1S)0. Now, x−1S = x−1k[x, y]/xy = x−1k[x, y]/y = x−1k[x] so (x−1S)0 = k.
The corresponding chart of ProjS is Spec k. Similarly, the other chart is Spec k. We have
(xy)−1S = {0}. So the overlap is Spec{0} = ∅ and ProjS is two points.

We have O(ProjS) = k2. Notice that S0 is only k. Let’s see how this happens from the

definitions. We have O(ProjS) = Ker
(

(x−1S)0 ⊕ (y−1S)0 → ((xy)−1S)0

)
. The map sends

(f, g) 7→ f |U∩V − g|U∩V , so its kernel is all of x−1S)0 ⊕ (y−1S)0 = k ⊕ k.
Example 4: Take S = k[u4, u3v, uv3, v4] ⊂ k[u, v] (note that u2v2 is not in S). Our

grading is such that S1 = k · {u4, u3v, uv3, v4} (so degree-4 terms in the usual grading
become degree-1). We can also think of this as S = k[p, q, r, s]/〈p2r − q3, qs2 − r3, ps− qr〉.

We have ProjS = Spec(p−1S)0 ∪ Spec(s−1S)0. We have (p−1S)0 = k[ v
u
, v

3

u3
, v

4

u4
] = k[ v

u
] and

(s−1S)0 = k[u
v
]. So ProjS is simply P1.

Let’s build the sheaf corresponding to the degree 1 part of S; we’ll call it C. We have
C(U) = k[ v

u
] · u4 and C(V ) = k[u

v
] · v4. Gluing gives C(P1) = k[u4, u3v, u2v2, uv3, v4] even

though S1 = k · {u4, u3v, uv3, v4}.
Finally, we stated but did not prove the following facts:
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Let S be a noetherian commutative ring. Then the abelian categories of quasi-coherent (re-
spectively, coherent) sheaves on SpecS and S-modules (resp., finitely generated S-modules)

are equivalent. The equivalence sends a module M to the sheaf M̃ , and sends the sheaf E
to the module Γ(E).

In the projective world, given S a Z≥0-graded ring, the categories of quasi-coherent (resp.,
coherent) sheaves on ProjS and (finitely generated) graded S-modules up to low degree are
equivalent. We send the module M to M̃ ; we send the sheaf E to

⊕
j≥0 Γ(E(j)).

February 18 – Vector Bundles and Locally Free Sheaves. In today’s class, we talked
about vector bundles and locally free sheaves. We began with the following definition:

Definition. Let (X,OX) be a scheme and E be a sheaf of OX-module, then E is said to be
locally free of rank r if there is a open cover {Ui} of X such that E|Ui

∼= O⊕rUi
for all i. In

particular, E is a coherent sheaf.

Then we introduced the notion of vector bundle.

Definition. A rank r vector bundle is a scheme E over X (namely, π : E → X) with maps

α : E ×X E −→ E,M : A1
X ×X E −→ E,

which locally look like addition and scalar multiplication in the sense that for any x ∈ X we
have the following maps

α : Ar
U ×U Ar

U −→ Ar
U , (addition)M : A1

U ×U Ar
U −→ Ar

U , (scalar multiplication)

for some open subset U of x ∈ X.

Then we described the correspondence between vector bundle E of rank r and locally free
sheaf E of rank r by the following constructions: (See Exercise II 5.18 for details) (1). Given

the vector bundle E
π−→ X of rank r, we define a sheaf on X by:

E(U) = {sections of U → π−1(U)}
It is a sheaf with abelian group structure. Also it is an OX-module: Given f ∈ OX(U),
U → π−1(U), f gives a map φ : U → A1

U , then we define

φ× σ : U −→ A1
U ×U π−1(U)

M−−−→ π−1(U).

(2). Conversely, given a locally free sheaf E , we want to construct a vector bundle E
corresponding to it. There are two routes to do so:

(i) (messy) Take an open cover Ui of X on which we have isomorphisms φi : O⊕rUi

∼= E|Ui
.

Then we have maps gij : O⊕rUi∩Uj
→ O⊕rUi∩Uj

given by

O⊕rUi∩Uj

φi−−−−→ EUi∩Uj

φj−−−−−→ O⊕rUi∩Uj
.

On triple overlap Ui ∩ Uj ∩ Uk, we have

gij|Ui∩Uj∩Uk
◦ gjk|Ui∩Uj∩Uk

= gik|Ui∩Uj∩Uk
.

Each gij is an r×r matrix with entries in O(Ui∩Uj), so it gives an automorphism of A|rUi∩Uj
.

Use these to glue the Ar
Ui

together.
(ii) (slicker) We may just consider the case where X = SpecR as it glues to a scheme. Let

M be a locally free R-module of rank r. Take E = Spec Sym ·M∨, where M∨ = Hom(M,R)
and

Sym•M∨ = R⊕M∨ ⊕ Sym2M∨ ⊕ · · ·
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in which Sym2M∨ = M∨⊗RM∨/(m1⊗m2−m2⊗m1) and so forth. It is clear that Sym•M∨

is a commutative ring. If M is locally free, then the sections SpecR→ E corresponds to M ,
as the ring map Sym•M∨ → R is determined by the map M∨ → R and (M∨)∨ ∼= M .

February 20 – Line bundles and divisors. A line bundle is a locally free sheaf of rank
1. Cartier divisors correspond to line bundles most generally, while Weil divisors are more
geometric. From now, assume we’re on an integral, Noetherian, locally factorial scheme.
(Locally factorial means that local rings are UFD’s. Just as a reminder, there are plenty of
non-UFD local rings in the world: Localize k[x, y]/(y2−x3) at 〈x, y〉 or localize k[x, y, z]/(xz−
y2) at 〈x, y, z〉.) These aren’t the weakest possible hypotheses, but we’re not aiming for the
weakest possible hypotheses.

Local rings at the height 1 primes are discrete valuation rings; so for any height 1 prime
p, and any f ∈ FracOp, we can talk about vp(f).

A Weil divisor onX is a formal sum of height 1 primes (possibly with negative coefficients),
and we write

Div(X) = Z · {height 1 primes}.
Since X is integral, it has a generic point η with fraction field K = FracOp for every p ∈ X.
For f ∈ K∗, the divisor is

Div(f) =
∑

ht(p)=1

vp(f) · [p].

Such a divisor is called principal, and the class group C`(X) is

C`(X) = Div(X)/principal divisors.

In this setup, we have:

Theorem. With these hypotheses on X, the group of line bundles on X is isomorphic to
C`(X).

Let’s sketch how this works. In one direction, given a divisor D =
∑
dp · [p] we define a

sheaf O(D)(U) = {f ∈ K | vp(f) + dp ≥ 0 for all p ∈ U}
Given a line bundle L on X, the stalk Lη is a one dimensional K vector space. (Here η

is the generic point and K = FracOη is the common value of every FracOp. At any height
1 prime p, choose a generator τp for Lp as an Op-module. So σp ∈ Lp ⊗Op k, and σp = fpτp.
The corresponding divisor is going to be D =

∑
vp(fp) · [p].

As an example, let’s take P1 = U ∪ V = Spec k[u] ∪ Spec k[v] glued by u = v−1. Then
O(m)

∣∣
U

= k[u]α and O(m)
∣∣
V

= k[v]β. A section here is something like c0α+ c1uα+ c2u
2α+

. . . cmu
mα = c0v

mβ + . . . cmβ. This vanishes at the roots of cmx
m + . . .+ c1xy

m−1 + c0y
m.

Finally, note that we can pull back line bundles. If X
φ−→ Y and L

π−→ Y is a line bundle,
then X ×Y L → X is a line bundle. The corresponding operation on coherent sheaves is
taking φ∗L:

(φ∗L)(U) = (O(V ))⊗lim−→O(U) ( lim−→
V⊃φ(U)

L(V ))



18 ALGEBRAIC GEOMETRY II – THE DAILY UPDATE

February 23 – Line bundles and maps to Pn. From a Projective space to a line bundle:

Given X
φ→ Pn−1, we get φ∗(O(1)), a line bundle on X.

X ×Pn−1 L //

��

L

��
X

φ // Pn−1

Every section of L → Pn−1 pulls back to a section of X ×Pn−1 L, namely to a section of
φ∗(O(1)).

Remark. This is behind the group law on elliptic curves. Given an elliptic curve L ⊆ P2

and two lines L1, L2, L1∩L = {P1, Q1, R1}, L2∩L = {P2, Q2, R2}. Then O(P1 +Q1 +R1) ∼=
O(P2 +Q2 +R2) ∼= φ∗(O(1)) where φ : L ↪→ P2.

From line bundles to projective space: Let L be a line bundle on X, let σ1, ..., σn be a
basis of Γ(X,L), let B ⊆ X be the closed subscheme σ1 = σ2 = · · · = σn = 0.

Definition. B is called the base points of L.

Thus we get a map X\B → Pn−1, x 7→ (σ1(x), · · ·σn(x)).
Let Ui be the open set in X where σi is nonzero, thus, L|Ui

= O|Ui
· σi and on Ui,

σj = fj/iσi for some fj/i ∈ O(Ui), (f1/i, · · · , fn/i) gives a map Ui → An−1. These glue to a
map X → Pn−1.

More generally, given W ⊆ Γ(L), we get a map X\B → P(W ∗).

Definition. A linear series on X is a line bundle L and W ⊆ Γ(L) as in the paragraph
above.

Definition. If X is proper, then L on X is called very ample if L has no base points and
X → P(Γ(L)∗) is a closed immersion. L is called ample if L⊗n is very ample for some n ∈ Z+.

Added after class: I thought about the issue of non-proper varieties more, and I agree
with Hartshorne that it is good, for an arbitrary X, to say that a line bundle L is very
ample if L ∼= φ∗O(1) for some immersion φ : X → Pn. I also agree with Takumi (see
http://math.stackexchange.com/questions/85688) that Hartshorne has a bad definition
of immersion. An immersion should be defined as the composition of first a closed immersion
and then an open immersion. EGA does this; Hartshorne puts them in the other order.
These should be the same with enough Noetherian hypotheses, but in any case where they
differ, I think EGA’s choice is better.

February 25 – More on line bundles and maps to projective space. Let X be a
scheme over a field k. Today we discussed how to obtain a map X → Pn from (sections of)
a line bundle L on X. The construction is as follows. First, we pick a vector subspace W
of Γ(X,L) that we call a linear system. Concretely, on closed points we can choose a basis
σ1, . . . , σn of W , and then define the map

X \B → P(W ∗) ∼= Pn−1

x 7→ [σ1(x) : σ2(x) : · · · : σn(x)]

where B is the subset of X on which the σi simultaneously vanish.
Here is a first example:
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Example (Cuspidal cubic). Let X = A1
k and L = OX . Then, Γ(L) ∼= k[t] is infinite

dimensional over k. Choosing W = k{1, t2, t3}, i.e., the k-vector subspace of k[t] spanned by
1, t2.t3, we get a map

A1 → P2

t 7→ [1 : t2 : t3]

whose image in P2 is the cuspidal cubic minus the point at∞. Note that if we were allowed
to talk about (very) amplitude of linear systems, this linear system would not be very ample
because the map it induces is not an immersion; in particular, the local sections at the origin
do not induce a surjection onto regular functions on A1.

Instead, if we take the linear system spanned by t2, t3, then B = {0} are our base points.
We therefore get a map

A1 \ {0} → P1

t 7→ [t2 : t3] = [1 : t]

whose image is P1 \ {0,∞}.

In the same vein, we have the following example:

Example (P1 as a quotient space). Let X = A2
k, and L = OX . Then, Γ(X,L) = k[x, y]. If

we take W to be the vector subspace spanned by x, y, then B = {0}, and we get a map

A2 \ {0} → P1

(x, y) 7→ [x : y]

which we recall is the quotient map used to define P1 last semester.

Here is a more involved example:
Let X be the hyperelliptic curve obtained by glueing the two curves {v2 = u+u2g+1} and
{y2 = x2g+1 + x} in A2 by (u, v) = (x−1, yx−(2g+1)).

Let∞ be the unique point in {u = v = 0}. In the local ring at∞, we have u = v2(unit) =
v2(1 + u2g), hence vO∞ generates m∞. The local ring O∞ is a DVR. We compute the some
valuations of elements in O∞:

ν∞(v) = 1, ν∞(u) = 2, ν∞(x) = −2, ν∞(y) = 1 + (g + 1)(−2) = −(2g + 1)

Note that g = 1 gives an elliptic curve.
Now Γ(X,OX) = k (since for any complete projective curve, there is no nonconstant

polynomial that doesn’t blow up at ∞). We investigate what happens if we allow poles at
∞. First, note

k[x, y]

y2 = x2g+1 + x
= k[x] + k[x]y (as a k[x]-module)

So, any polynomial k[x, y] can be expressed as f(x) + h(x)y. We then can calculate

ν∞(f(x) + g(x)y) = min{ν∞(f(x)), ν∞(h(x))ν∞(y)}
= min{−2 deg f,−(2 deg h+ 2g + 1)}

Thus, even if we allow a pole at ∞, we gain nothing: Γ(X,OX(∞)) = k.
On the other hand, Γ(X,OX(2∞)) = k+ k · x. Note that O(2∞)∞ = O∞ · x. The section

x ∈ Γ(X,OX(2∞)) is nonvanishing at ∞, while the section 1 ∈ Γ(X,OX(2∞)) is vanishing
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at ∞, since 1 = u · x and u ∈ m ⊂ O∞. Thus, the linear system spanned by 1, x has no base
points, inducing the map

X
ϕ→ P1

(x, y) 7→ [1 : x]

(u, v) 7→ [u : 1]

which is a twofold cover, where we note the maps glue since u = x−1, and O(2∞) = ϕ∗O(1).
We can allow even higher order poles at ∞:

Γ(X,O(3∞)) =

{
k + kx+ ky if g = 1

k + kx if g > 1

The case g = 1 gives an embedding

E ↪→ P2

(x, y) 7→ [1 : x : y]

(u, v) 7→
[

1

y
:
x

y
: 1

]
so choosing a point in E induces an embedding of E as a cubic curve in P2. With some
work, we can show this is a closed embedding, so O(3P ) where P is a point in E is very
ample on E a genus 1 curve.

If g > 1, then ∞ is a base point of O(3∞). This is because the section 1 has a pole of
order 0 at ∞ and x has a pole of order 2 at ∞, and so both sections have poles of order less
than 3, and therefore have vanishing at ∞. Thus, ∞ is a base point for our linear system,
and we get a map X \ {∞} → P1.

In general, a line bundle of the form O(n∞) has a base point for n odd, and has no base
points for n even, until n = 2g+ 1 when y becomes a section. Before this point, the induced
map is a double cover of higher and higher degree rational curves, and when n = 2g + 1
we get an honest embedding of our curve in Pn. Thus, O(∞) is an ample divisor on a
hyperelliptic curve.

Finally, O((2g−2)∞) is the canonical class of a genus g hyperelliptic curve; the discussion
above can be translated into the language of differential forms.

February 27 – Various remarks about line bundles. Why are we thinking about line
bundles? Because we sometimes don’t have enough actual functions (e.g. on connected
projective varieties, we only have constant functions). As a concrete example, a cubic in
P2 is a section of a line bundle, but not the zero locus of a polynomial. A very ample line
bundle is one that embeds into Pn.

Some comments on ampleness: If X is proper (smooth?) and L is a line bundle on X,
then for every curve C in X, we have a line bundle L

∣∣
C

which has a degree. If L is ample on

X, then L
∣∣
C

is certainly ample on C. In that case, degL
∣∣
C
> 0. In fact, L is ample if and

only if degL
∣∣
C
> 0 is ample for every curve C ⊂ X. There isn’t really an analogue of this

for very ample line bundles, and is maybe the first place where ample starts looking better.
A discussion of Proj and the twisting sheaf : Throughout, let S be a positively graded

ring which is generated in degree 1. Remember that ProjS is glued from Spec(f−1S)0.
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Why are we doing this, and what does this look like? Spec f−1S is open in SpecS, and
the union is

⋃
f Spec f−1S = SpecS \ V ({f | f ∈ S>0}). So we get a map

SpecS \ V ({f | f ∈ S>0})→ ProjS

Spec f−1S 7→ Spec(f−1S)0

which can be thought of as ‘quotienting by dilation’.

Given a graded module M =
⊕

Mj for S, the sheaf M̃ on ProjS is M̃(D+(f)) = (f−1M)0,
which is clearly an (f−1S)0-module. On the module side, we get a twist by M [n]i = Mi+n.

In particular, we get a line bundle O(n) := S̃[n]. Then M̃ [n] ∼= M̃ ⊗O O(n).
Let’s look on P1. There are two charts, P1 = U ∪ V , where U = Spec k[x] and V =

Spec k[x−1]. Then O(n)(U) = k[x] · α and On(V ) = k[x] · β, and we glue these together by
β = xnα.

If E → P1 is a vector bundle, with could have (say) E
∣∣
U
∼= Ar × U and E

∣∣
V
∼= Ar × V ,

glued by g ∈ GLr(k[x, x−1]). Twisting replaces g for E by xng for E ⊗O O(n). If E(U) has
basis e1, . . . , en and E(V ) has basis f1, . . . , fn, then (E⊗O(n))(U) has basis α⊗e1, . . . , α⊗en
and (E ⊗ O(n))(V ) has basis β ⊗ e1, . . . , β ⊗ en.

Some functors between categories we’ve seen so far:

Graded k[x0, . . . , xr]-modules
M 7→M̃

,,
saturate

��

Quasi-coherent sheaves on Pr
E 7→

⊕
j≥0 Γ(E(j))

rr
Saturated graded k[x0, . . . , xr]-modules

embed

KK

The downward map, saturation, is the composition of the two diagonal arrows. When I
is a graded ideal of k[x0, . . . , xr], the saturation of I is

⋃
j(I : m∞), where m = 〈x0, . . . , xr〉.

See Section 15.4 in Vakil for a good discussion.

March 9 – Introduction to sheaf cohomology. Let X be a topological space, and let
A, B, and C be three sheaves of abelian groups on X. Then, recall that if the sequence

0 −→ A −→ B −→ C −→ 0

is exact, then the sequence

0 −→ Γ(X,A) −→ Γ(X,B) −→ Γ(X, C)
is exact, but we can’t extend this to a short exact sequence. We have the following examples:

Example. Let X be a smooth manifold. Let R be the sheaf of locally constant R-valued
functions, C∞ the sheaf of smooth functions, and Z1 the sheaf of smooth closed 1-forms.
Then, we have the short exact sequence

0 −→ R −→ C∞ −→ Z1 −→ 0

by the Poincaré lemma. We then have the sequence

0 −→ H0(X,R) −→ C∞(X)
d−→ Z1(X) −→ H1

DR(X,R)

which is exact. H1
DR(X,R) “measures the failure of integrability of 1-forms on X.”
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Example. Let X be a complex manifold. Let Z be the sheaf of locally constant Z-valued
functions, H the sheaf of holomorphic functions, and H∗ the sheaf of nonvanishing holomor-
phic functions. We have the exponential sequence

0 −→ Z 2πi−→ H exp−→ H∗ −→ 0

which gives the exact sequence

0 −→ H0(X,Z) −→ H(X) −→ H∗(X) −→ H1(X,Z).

These two examples suggest that there might be something called H1(X,F) for F a sheaf
that extends these exact sequences further to the right.

Example. We also have the following algebro-geometric example. Let X be a smooth
projective curve over an algebraically closed field k. Let D be a divisor on X, and P a point
in X. From last semester, we have the short exact sequence

0 −→ O(D) −→ O(D + P ) −→ kP −→ 0

where kP denotes the skyscraper sheaf at P . This gave the five-term exact sequence

0 −→ Γ(X,O(D)) −→ Γ(X,O(D+P )) −→ k −→ H1(X,O(D)) −→ H1(X,O(D+P )) −→ 0

We want to mimic these examples for arbitrary sheaves of abelian groups. More precisely,
we want to construct functors

Hq(X,−) : {sheaves of abelian groups on X} → {abelian groups}
E 7→ Hq(X, E)

satisfying the following three properties:

(1) H0(X, E) = Γ(X, E) = E(X),
(2) every short exact sequence 0→ A→ B → C → 0 gives a long exact sequence

· · · // Hq(X,A) // Hq(X,B) // Hq(X, C)

Hq+1(X,A)//

δ

// Hq+1(X,B) // Hq+1(X, C) // · · ·

(3) The map δ above satisfies a naturality property (see Hartshorne, III.1).

Definition. Suppose the family of functors Hq(X,−) exists. A sheaf of abelian groups I
on X is acyclic if H i(X, I) = 0 for all i > 0.

We show that such a family of functors will be uniquely determined by the data of which
objects are acyclic, assuming that there are enough maps to acyclic objects.

Proposition. If 0→ A→ I → B → 0 is exact and I is acyclic, then

0 −→ H0(X,A) −→ H0(X, I) −→ H0(X,B) −→ H1(X,A) −→ 0

is exact and Hq(X,A) ∼= Hq−1(X,B) for q ≥ 2.

Proof. Follows by the long exact sequence in property (2). �
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Definition. A long exact sequence of sheaves of abelian groups on X of the form

0 −→ A −→ I0 −→ I1 −→ I2 −→ · · ·
where the Iq are acyclic is called an acyclic resolution of A. We often use the shorthand
0→ A→ I• to denote an acyclic resolution.

We assume for now a technical lemma about the category of sheaves on X:

Lemma. For any sheaf A of abelian groups on X, there exists an acyclic sheaf I such that
A ↪→ I is injective.

We can now state our theorem for the day:

Theorem. LetA be a sheaf of abelian groups onX. Then, an acyclic resolution 0→ A→ I•
exists, and Hq(X,−) is uniquely determined (up to isomorphism) on objects to be

Hq(X,A) ∼=
ker(H0(X, Iq)→ H0(X, Iq+1))

Im(H0(X, Iq−1)→ H0(X, Iq))
.

Remark. Note that this theorem does not say anything about what Hq(X,−) should do on
morphisms; this will later be a consequence of property (3).

Proof. Define A0 := A. By the Lemma, there exists an acyclic sheaf I0 such that A0 ↪→ I0.
We now proceed inductively. Suppose Aq, Iq exist. Let Aq+1 := cok(Aq → Iq). By the
Lemma again, there exists an acyclic sheaf Iq+1 such that Aq+1 ↪→ Iq+1. This gives short
exact sequences

0 −→ Aq −→ Iq −→ Aq+1 −→ 0

for every q, hence by the Proposition, we have the isomorphisms

Hq(X,A0) ∼= Hq−1(X,A1) ∼= · · · ∼= Hq−i(X,Ai)
for all i > 0, and for i = 0, the Proposition gives

H1(X,Aq−1) ∼= cok(H0(X, Iq−1)→ H0(X,Aq))
H0(X,Aq) ∼= ker(H0(X, Iq)→ H0(X,Aq+1)) = ker(H0(X, Iq)→ H0(X, Iq+1))

where the last equality is by the fact that H0(X,Aq+1) ↪→ H0(X, Iq+1). Combining these
facts, we have

Hq(X,A0) ∼= cok(H0(X, Iq−1)→ ker(H0(X, Iq)→ H0(X, Iq+1)))

=
ker(H0(X, Iq)→ H0(X, Iq+1))

Im(H0(X, Iq−1)→ H0(X, Iq))
.

Note that the short exact sequences used above can be chained together to form a long exact
sequence as in the diagram

0

!!

0 0

!!

0

A1

==

!!

A3

==

!!

I0 //

==

I1 //

!!

I2 //

==

I3

!!

// · · ·

A0

==

A2

!!

==

A3

""

==

0

>>

0

==

0 0

==

0
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since by definition Aq = Im(Iq−1 → Iq), and so the maps 0 → A0 → I0 plus the maps in
the middle row give an acyclic resolution 0 → A → I•. Hence we have shown that we can
compute the cohomology of A0 as the cohomology of a complex of abelian groups. �

Example. On a smooth manifold of dimension n,

0 −→ R −→ C∞ −→ Ω1 −→ Ω2 −→ · · · −→ Ωn −→ 0

is an acyclic resolution of R. Thus, the Theorem shows Hq
DR(X,R) ∼= Hq(X,R).

March 11 – Defining sheaf cohomology via injective resolutions. (Note: in this
section, all sheaves are sheaves of abelian groups)

Recall Leray’s theorem from last time: if 0 → A → I0 → I1 → · · · is an acyclic
resolution of A, then necessarily

Hq(A) ∼=
Ker(Γ(Iq)→ Γ(Iq+1))

Im(Γ(Iq−1)→ Γ(Iq))
= Hq(0→ Γ(I0)→ Γ(I1)→ · · · ).

We now address the issue of deciding which sheaves are acyclic.

Definition. A sheaf I is injective if for any map f : A → I and any injection i : A ↪→ B,
we may factor f through i:

A � � i //

f
��

B

��
I

(i.e. we may “extend” A → I to some B → I).

For comparison, in the category of abelian groups Q/Z is an injective object.

Theorem. For any sheaf A, there is an injection A ↪→ I with I injective.
(The same result holds for OX-modules and quasi-coherent OX-modules.)

This is often expressed by saying there are ‘enough injectives’ in the category of sheaves
of abelian groups. As a corollary, we get:

Corollary. Any sheaf A has an injective resolution

0→ A→ I0 → I1 → I2 → · · · .

To prove this, we simply find an injection A → I0, and then find A1 → I1 where A1 =
CoKer(A → I0), and so on. With this, we can define sheaf cohomology:

Definition (Sheaf cohomology). For any sheaf A and any injective resolution 0→ A→ I•,
we define the sheaf cohomology of A to be

Hq(A) = Hq(Γ(I•)).

(In particular, this definition implies that injective sheaves are acyclic. Some reasoning
for why we would want this to happen is given below)

There is a notion dual to injective that is often more intuitive:
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Definition. An object P is projective if, for any map f : P → A and any surjection
q : B � A, we may factor f through q:

P

f
����

B
q // // A

(i.e. we may “lift” P → A to some P → B).

Remark. Projective is ‘like’ free. In particular, free objects are always projective (or, in
most categories?), and in the category of modules over a commutative ring, the projective
modules are exactly the direct summands of free modules.

A hint that Hq(I) wants to be 0 for q ≥ 1: given a short exact sequence

0→ I α−→ B β−→ C → 0

with I injective, we can show that 0→ Γ(I)→ Γ(B)→ Γ(C)→ 0 is exact. To see this, look
at:

I α // B

π��
I

So by injectivity I → B splits B = Im(α)⊕Ker(π), and β induces Ker(π)
∼−→ C. Our sequence

0→ I → Im(α)⊕Ker(π)→ C → 0 decomposes into two (very short) exact sequences

0→ I → Im(α)→ 0 and 0→ Ker(π)→ C → 0,

and hence
0→ Γ(I)→ Γ(α(I))⊕ Γ(Ker(π))→ Γ(C)→ 0

is exact.
We still need to do the following:

• figure out what Hq is on morphisms A f−→ B,
• check Hq(A) doesn’t depend on our choice of I•,
• check Hq(A f−→ B) doesn’t depend on choices A → I•, B → J •,
• define the boundary map δ, and
• check the long exact sequence.

Until we do this, we’ll write Hq(A, I•).

Lemma. Suppose we have a morphism A f−→ B and injective resolutions A → I• and
B → J •. Then we can extend this to a commutative diagram

A
f
��

// I0

f0

��

// I1

f1

��

// · · ·

B // J 0 // J 1 // · · ·

Proof. A → I0 is an injection and we have a map A → J 0. So we can extend by injectivity:
Then I0/A → I1 is injective and f0 induces a map I0/A → J 1, so we can again extend to

I1 f1−→ J 1 by injectivity. We then repeat this argument to finish the proof. �
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With notation as above:

Definition. Hq(f) : Hq(A, I•)→ Hq(B,J •) is the map Hq(f) : Hq(Γ(I•))→ Hq(Γ(J •)).

We continue in our quest to check that things make sense with:

Lemma. If we have injective resolutions:

A
f
��

// I0

g0

��
h0





// I1

g1

��
h1





// · · ·

B // J 0 // J 1 // · · ·
where the complex with vertical maps g• commutes, and the complex with vertical maps h•

commutes, then there are maps
∫

: Iq+1 → J q such that gj − hj = d
∫
−
∫
d for each j.

Ij

gj

��
hj




d //∫
||

Ij+1

∫
||

J j−1 d // J j

This lemma gives us a ‘chain homotopy’: which implies that g• and h• induce the same
maps on cohomology by general homological algebra: given φ ∈ Hq(Γ(I•)), let φ̃ ∈ Γ(Iq) be

some representative. Then gq(φ̃) − hq(φ̃) =
∫
dφ̃ − d

∫
φ̃ = −d(

∫
φ̃) since φ̃ ∈ Ker(d), and

clearly −d(
∫
φ̃) ≡ 0 in Hq(Γ(I•)). Thus g − h induces the zero map on cohomology, so we

have g = h on cohomology as claimed.
At this point, we know that Hq(f) : Hq(A, I•) → Hq(B,J •) is well defined. To see

Hq(A) is well-defined (independent of I•), apply this with f = Id : A → A. This gives
Hq(A, I•)→ Hq(A,J •). We also have a map the other way. Then

A // I0

��

// · · ·

A // J 0

��

// · · ·

A // I0 // . . .

and
A // I0 // · · ·

A // I0 // . . .

induce the same mapHq(A, I•)→ Hq(A, I•). SoHq(A, I•)→ Hq(A,J •) andHq(A,J •)→
Hq(A, I•) are inverse, so in particular they are both isomorphisms.

March 13 – Construction of hypercohomology. Today we’ll talk about hypercohomol-
ogy; this is an interlude, which should clarify some sheaf cohomology questions and help
with what’s coming up. However, it will remain a side topic for us.

We’ll write Comp for the category of complexes of sheaves. That is, the objects are

0→ A0 → A1 → . . .
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and the morphisms are given by vertical maps which make the diagram

0 A0 A1 . . .

0 B0 B1 . . .

commute.
We’ll write Hq(A•) = Ker(Aq → Aq+1)/Im(Aq−1 → Aq) (Curly words⇒ Sheaves) Note

that A• is exact if and only if H•(A•) = 0. We have the notion of a quasi-isomorphism of
complexes:

Definition. A map f : A• → B• is a quasi-isomorphism if f induces isomorphismsH•(A•) f∗−→
H•(B•).

Here’s an important example of a quasi-isomorphism:

Example. Let A be a sheaf, and let A[0] be the complex 0 → A → 0 → 0 → . . .. If
0→ A → I• is an injective resolution, then A[0]→ I• is a quasi-isomorphism: that is, the
diagram

0 A 0 0 . . .

0 I0 I1 I2 . . .

commutes.

A lemma we glossed over:

Lemma. Any complex A• has a quasi-isomorphism to a complex of injective objects.

Now, define hypercohomology to be a functor Comp→ Ab satisfying:

• If f • : A• → B• is a quasi-isomorphism, then Hq(f •) is an isomorphism.
• If I• is an injective complex, then Hq(I•) = Hq(Γ(I•)).

For any complex A•, if A• → I• is a quasi-isomorphism, then Hq(A•) = Hq(Γ(I•)).
Lemma. (No harder than before) Let I• and J • be injective. If f and g are quasi-
isomorphisms below, we get a quasi-isomorphism h in the following diagram:

A• I•

J •
g

f

h

Lemma. If I• f−→ J • is a quasi-isomorphism, then Hq(Γ(I•)) ∼= Hq(Γ(J •)).
Using the first of these two, we can fill in the diagram:

A• I•

B• J •

g

f

h
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if g and h are quasi-isomorphisms.

Lemma. If we have I• J •f•

g•
and f •, g• induce the same map on H•, then f • and

g• are chain homotopic.

Now, suppose we have 0→ A• → B• → C• → 0 exact. That is, for all q, 0→ Aq → Bq →
Cq → 0 is exact. Then consider:

A0 A1 A2 . . .

B0 B1 . . .

α0

d d

α1

d

α2

d d

Define K• by Ki = Ai ⊕ Bi−1. We have a map K• → C•−1 by projecting Kq onto Bq−1 then
using the map to Cq−1 from the short exact sequence, which is a quasi-isomorphism. So
Hq(K•) ∼= Hq−1(C•) and

Hq(A•) Hq(B) Hq(C)

Hq+1(K•) Hq+1(A•)

∼=

is functoriality.
To see how this relates to geometry, we have the below theorem by Grothendieck:

Theorem (Grothendieck3). If X is a smooth finite type scheme over C, then

Hq(Xan,C) ∼= Hq(O → Ω1 → Ω2 → . . .)

If X is affine, Hq(X,C) = Hq(Γ(Ω•)). If X is projective, we have:

Theorem (Hodge). Hk(X,C) ∼=
⊕

p+q=kH
q(X,Ωp)

Example. On a curve, the DeRham complex DR• is O → Ω1. We have a short exact
sequence of complexes 0→ Ω1[1]→ DR• → O[0]→ 0. That is:

0 Ω1

O Ω1

O 0

d

3On the de Rham Cohomology of Algebraic Varieties, Inst. Hautes Études Sci. Publ. Math. No. 29 1966
95 –103
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So we have a long exact sequence

0 0 H0(Xan,C) Γ(O)

Γ(Ω1) H1(Xan,C) H1(X,O)

H1(X,Ω1) H2(Xan,C) 0

When X is projective, the snaky maps are 0. (This is hard!)

March 16 – Čech Cohomology. We introduced Čech cohomology.
Given a continuous map φ : U → X and a sheaf E on U , the push forward φ∗E on X is given
by (φ∗E)(V ) = E(φ−1(V )) for V open in X.

Given an open cover X = ∪Ui, write Ui0···ip = Ui0 ∩· · ·∩Uip , and write ιi0···ip : Ui0···ip ↪→ X
for the inclusion. For a sheaf E on X, define Ei0···ip = (ιi0···ip∗)(E|Ui0···ip

) so that Ei0···ip(V ) =

E(Ui0 ∩ · · · ∩ Uip ∩ V ).

The Čech complex of E and U is E →
∏
Ei0 →

∏
i0<i1
Ei0i1 → · · · , with the map from

Ei0···ip → Ej0···jp+1 given by{
0 if {i0, · · · , ip} 6⊂ {j0, · · · , jp+1}
(−1)rρ

Uj0···jp+1

U
j0···ĵr ···jp+1

if {i0, · · · , ip} = {j0, · · · , ĵr, · · · , jp+1}.

Theorem: This is exact. (Hartshorne, Lemma III.4.2)
We have Hq(X, Ei0···ip) = Hq(Ui0···ip , E|Ui0···ip

). If E|Ui0···ip
is acyclic, then Hq(X, E) =

Hq(Čech complex).
Theorem (coming Friday): If U is affine and E is a quasi coherent sheaf on U , then

Hq(U, E) = 0 for q > 0.
So in particular if we have affine covers whose (p+ 1)-fold intersections are affine for all p

and E is quasi coherent, then we can compute cohomology using Čech complexes. Note that
for a separated scheme X, the intersection of affines is affine.

Example. Let X be a triangulated manifold, I the set of vertices of the triangulation. For
i ∈ I, set Ui to be the union of the interiors of all faces (any dimension) containing i. Then
Ui0···ip = ∅ if (i0, · · · , ip) is not a face and Ui0···ip is contractible if (i0, · · · , ip) is a face. The

Čech complex of R on X with respect to Ui is the cochain complex C•(X) with respect to
the triangulation. In particular, if Hq(U, E) vanishes for U contractible, then Hq(X, E) is
Hq(Čech complex).

Example. P1 = U ∪ V for U = Spec k[x], V = Spec k[x−1]. Then U ∩ V = Spec k[x, x−1].
The Čech complex for O with respect to the cover (U, V ) is O(U)⊕O(V )→ O(U ∩ V )→
0 → 0 → · · · , where the map k[x] ⊕ k[x−1] → k[x, x−1] is given by (f, g) 7→ f − g. So
H0(P1,O) = k,H1(P1,O) = 0.

Example. Work with the sheaf Ω1 on P1. Ω(U) ⊕ Ω(V ) → Ω(U ∩ V ) → · · · . The map
k[x] ·dx⊕k[x−1] ·x−2dx→ k[x, x−1] ·dx→ 0 · · · is given by (α, β) 7→ α−β. So H0(P1,Ω) = 0
and H1(P1,Ω) = k · x−1dx.
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March 18 – Examples of Čech cohomology computations.

Example. Let us compute the Čech cohomology H•(P2,O) of the structure sheaf O on P2.
P2 is covered by 3 copies of A2. If we write P2 = Proj k[x, y, z], then the open sets are

Spec k
[x
z
,
y

z

]
, Spec k

[
x

y
,
z

y

]
, and Spec k

[y
x
,
z

z

]
.

Set u = x
z

and v = y
z
, then the cover is

Spec k[u, v], Spec
[u
v
, v−1

]
, and Spec k

[v
u
, u−1

]
.

The overlaps are

Spec k[u, v] ∩ Spec k
[u
v
, v−1

]
= Spec k[u, v±],

Spec k[u, v] ∩ Spec k
[v
u
, u−1

]
= Spec k[u±, v],

and

Spec k
[u
v
, v−1

]
∩ Spec k

[v
u
, u−1

]
= Spec k

[(u
v

)±
, u−1

]
.

Here, u± means that one must include both u and u−1. The triple overlap is

Spec k[u, v] ∩ Spec k
[u
v
, v−1

]
∩ Spec k

[v
u
, u−1

]
= Spec k[u±, v±].

Then, the Čech complex is

k
[
u−1, v

u

]
//

&&

⊕
k[u±, v]

⊕
&&

k[u, v]

&&

88

⊕
k
[(

u
v

)±
, u−1

]
⊕

// k[u±, v±]

k
[
v−1, u

v

]
//

88

k[v±, u]

88

We compute that H0(P2,O) = k and H1(P2,O) = H2(P2,O) = 0.

Example. Let us compute Čech cohomology H•(P2,Ω2). This time the Čech complex is

k
[
u−1, v

u

]
u−3du ∧ dv //

**

⊕
k[u±, v]du ∧ dv

⊕
))

k[u, v]du ∧ dv
⊕

**

44

k
[(

u
v

)±
, u−1

]
u−3du ∧ dv

⊕
// k[u±, v±]du ∧ dv

k
[
v−1, u

v

]
v−3du ∧ dv //

44

k[v±, u]du ∧ dv

55

We compute that H0(P2,Ω2) = H1(P2,Ω2) = 0 and H2(P2,Ω2) = k · du∧dv
uv
' k.
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Example. The hyperelliptic curve X is constructed by glueing the affine schemes

A = Spec

(
k[x, y]

(y2 = f2g+1x2g+1 + . . .+ f1x)

)
and B = Spec

(
k[u, v]

(v2 = f2g+1u+ . . .+ f1u2g+1)

)
,

where we glue {x 6= 0} to {u 6= 0} by u = x−1 and v = x−g−1y. Observe that

k[x, y]

(y2 = f2g+1x2g+1 + . . .+ f1x)
= k[x]⊕k[x]·y and

k[u, v]

(v2 = f2g+1u+ . . .+ f1u2g+1)
= k[u]⊕k[u]·v.

The Čech complex is O(A)⊕O(B)→ O(A ∩B), which becomes

(k[x]⊕ k[x] · y)⊕
(
k[x−1]⊕ k[x−1] · x−g−1y

)
→ k[x±]⊕ k[x±] · y.

This breaks up into 2 complexes:

k[x]⊕ k[x−1]→ k[x±] and k[x] · y ⊕ k[x−1]x−g−1y → k[x±]y.

We compute that H0(X,O) = k and H1(X,O) ' kg, with basis yx−1, yx−2, . . . , yx−g.

March 20 – Cohomology of quasi-coherent sheaves vanishes on affines. The goal of
today was to to show that if X = SpecR, for R a noetherian ring, and E is a quasi-coherent
sheaf on X, then Hq(X, E) = 0 for q > 0.

The key to this result is the correspondence between quasi-coherent sheaves on SpecR and

R−modules. We recall that given a R-module M we can construct the sheaf M̃ on SpecR

with the property that M̃(D(f)) = f−1M . We stated a while ago that every quasi-coherent

sheaf on SpecR is of the form M̃ ; today we will finally prove this.
We proved the following key lemmas.

Lemma (Fact 1). If u ∈ E(x) and for f ∈ R we have that u|D(f) = 0, then there exist some
N such that fNu = 0.

Lemma (Fact 2). If f ∈ R and U ∈ E(D(f)), then there exist N and v ∈ E(X) such that
fNu = v|D(f).

These two lemmas allow us to prove the following theorem.

Theorem. Let E be a quasi-coherent sheaf on X = SpecR. Then E ∼= Ẽ(X).

We prove the theorem by considering the map f−1E(X) → E(D(f)) whose existence is
granted by the universal property of localization. Moreover, since this map is defined on a

basis of the topology, it extends to a map Ẽ(X)→ E . Finally, Lemma 1 gives us injectivity
of the map and Lemma 2 gives us surjectivity.

Next, we applied this result and functoriality of ∼ to prove the following theorem.

Theorem. Let X = SpecR and consider

0→ A→ B → C → 0,

a SES of quasi-coherent sheaves on X. Then

0→ A(X)→ B(X)→ C(X)→ 0,

is exact.
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We proved the theorem by considering D = CoKer(B(X) → C(X)). Since C(X) → D is

a surjection, C → D̃ is a surjection. So the composite B → C → D is a surjection. But this
composite is 0, so D = 0 and D = 0. �

Finally, we used these results to establish our initial goal.

Theorem. Let X = SpecR and consider E a quasi-coherent sheaf on X. Then Hq(X, E) = 0
for q ≥ 1.

Proof by induction on q. Inject E into a quasi-coherent injective I, giving the short exact
sequence 0 → E → I → F → 0. Then we have an exact sequence 0 → H0(E) → H0(I) →
H0(F) → H1(E) → 0. But we showed in the previous theorem that H0(E) → H0(I) is
surjective, so H1(E) = 0. For the inductive case, note that the long exact sequence gives
Hq+1(E) ∼= Hq(F). �

March 23 – Eventual global generation. Today we explained how to use line bundles
to extend yesterday’s ideas to non-affine schemes. Let X be a scheme (not necessarily affine)
and L a line bundle on X. Let φ ∈ L(X) (analogous to yesterday’s f), and let U be the
open set U = {x ∈ X : φ(x) 6= 0} ⊆ X. Finally, let E be a quasi-coherent sheaf on X. We
have the following results, analogous to Friday’s Fact 1 and Fact 2.

Lemma. If v ∈ E(X) obeys v|U = 0, then there exists N > 0 such that φNv = 0 in L⊗N⊗E .

Lemma. Let X, E and L be as above and let u ∈ E(U). Then there exists N and v ∈
L⊗N ⊗ E(X) such that φNu = v|U in L⊗N ⊗ E(U).

Theorem. Let X be Noetherian and Proper over an algebraically closed field. Let E be
quasi-coherent and let L be an ample sheaf on X. Then for some N > 0, the tensor product
E ⊗ L⊗N is globally generated.

Proof sketch. Replace L by L⊗d we may assume L is very ample and thus i : X ↪→ Pr and
L = i∗O(1). Since X is proper, i(X) is closed in Pr. Fix x ∈ X; let φ ∈ H0(Pr,O(1)) define
a hyperplane not through x.

Let U be the open set in X where φ /∈ 0. Now Pr\{φ = 0} = Ar and U is closed in Ar so
U is affine. So Ex is generated as an Ox−module by E(U) as E is coherent, pick generators
v1, . . . , vm for E(U). We can lift φNv1, . . . , φNvm to H0(X, E ⊗ L⊗N) by prop 2.

This proves that some N works at x, then one uses Nakayama to deduce that N works in
a neighborhood of x. Finish by compactness. �

Corollary. Let X be proper and Noetherian, let L be an ample sheaf on X and E a coherent
sheaf. Then there exists a surjection (L⊗(−N))⊕M � E .

March 25 – Cohomology of line bundles on projective spaces. Today’s goal is to
compute the cohomology groups of line bundles on projective spaces. First we go through
the restatement of the concepts in last class: Let X be proper scheme, L be an ample line
bundle, and E is a coherent sheaf on X, then E ⊗ L⊗N is globally generated in the sense
that Γ(E ⊗L⊗N) generate (E ⊗L⊗N)x for all x ∈ X. In other words, we have the surjection
Γ(E⊗L⊗N)⊗O → E⊗L⊗N , in which Γ(E⊗L⊗N)⊕O ∼= O⊕M for some M . So if we have lots
of sections σ1, · · · , σM of E ⊗ L⊗N , then we can use these sections to get a map from O⊕M
to E ⊗L⊗N by sending M−tupe regular functions (f1, · · · , fM) to

∑
fiσi. Alternatively, we

can say (L−⊗N)M → E is surjective.
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Example (deg 3 plane curve). Let C be the curve x3 +y3 +z3 = 0 in P2, OC be the structure
sheaf of C, we have the following exact sequence:

0 OP2(−C) OP2 OC 0,

where the line bundle OP2(−C) is the kernel of the restriction OP2 → OC . It turns out that
OP 2(−C) ∼= O(−3). More explicitly, on Spec k[x

z
, y
z
], we see O(−C) is a k[x

z
, y
z
]-module gen-

erated by 1+ x3

z3
+ y3

z3
, and O(−3) is a k[x

z
, y
z
]-module generated by z−3, and this isomorphism

sends generator to generator. The above exact sequence can thus be rewritten as

0 O(−3) OP2 OC 0.
·(x3 + y3 + z3)

Now we are going to compute Hq(Pn,O(d)). Note that all line bundles on Pn are equivalent
to O(d) for some d. As Pn is smooth (hence locally factorial), the Cartier divisors are
isomorphic to the Weil divisors modulo rational equivalence. We have the following results
(with respect to the open cover Uj = {xj 6= 0}):

H0(Pn,O(d)) = k · {xd00 · · ·xdnn : d0, · · · , dn > 0,Σdi = d},
Hq(Pn,O(d)) = 0 for 0 < q < n
Hn(Pn,O(d)) = k · {xd00 · · ·xdnn : d0, · · · , dn < 0,Σdi = d}.

Note that H0(Pn,O(d)) is nontrivial only for d ≥ 0, and Hn(Pn,O(d)) is nontrivial only for
d ≤ −n− 1.

We use the Čech cover {xj 6= 0}. Fix a degree (d0, · · · , dn) ∈ Zn+1 with Σdi = d, and set
N = {j : dj < 0} ⊆ {0, · · · , n}. Then we have the following relation:

xd00 · · ·xdnn ∈ O(d)(Uj0···jp)⇐⇒ N ⊆ {j0, · · · , jp}
If N = ∅, then we get the Čech complex

kn+1 → k(n+1
2 ) → · · · → k(n+1

n+1),

which only contributes to H0. Another boundary case is N = {0, 1, · · · , n}, then the complex
becomes

0→ 0→ · · · → k,

which only contributes to Hn. In all other cases, we get

0→ · · · 0→ k︸︷︷︸
#N−th

→ kn−#N → kn−#N → · · · → k,

which gives Hq = 0 for every degree except the missed degenerate cases.
Lastly, we talk about an application to the cubic curve. From the short exact sequence
discussed above, we get the long exact sequence as follows:

0 H0(P 2,O(−3)) H0(P2,OP2) H0(C,OC)

H1(P 2,O(−3)) H1(P2,OP2) H1(C,OC)

H1(P 2,O(−3)) H1(P2,OP2) 0.
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Using the results on cohomology of line bundles, we have

0 0 k H0(C,OC)

0 0 H1(C,OC)

k 0 0,

from which we deduce that H0(C,OC) ∼= k and H1(C,OC) ∼= k.

March 27 – Serre Vanishing. Our goal today will be to prove the Serre vanishing theorem
and some related things. Let X be projective over k,4 E be coherent on X and L be ample.
We’re going to show that dimkH

q(X, E) < ∞ for all q, and that for N sufficiently large,
Hq(X, E ⊗ L⊗N) = 0 for q ≥ 1 (this is called Serre’s vanishing theorem).

First, we should do some clean-up: we can replace L by L⊗d and assume we have an
embedding X ↪→ ιPr with L = O(1)

∣∣
X

. Replacing E by i∗E , we can assume X = Pr. The
first thing we’ll need is:

Theorem. (Grothendieck) If q > dimX, then Hq(X, E) = 0.

Remark. Grothendieck (and Hartshorne) proved this with very minimal hypotheses: X
needs to be a Noetherian space, and E can be any sheaf of abelian groups. For X = Pr, this
is much easier: we cover with r + 1 charts. Incidentally, this is not so bad even when X is
merely projective (and not Pr itself).

If X ⊂ Pr is closed (and |k| = ∞), choose λ1 ∈ H0(Pr,O(1)) so that the set given by
λ1 = 0 contains no component of X. Set X2 = X ∩ V (λ1), so dimX2 < dimX. We repeat,
choosing λ2 so that V (λ2) contains no component of X2, and construct X3 = X2 ∩ V (λ2).
We get V (λ1, . . . , λdimX+1) ∩X = ∅, and then Ui = X ∩D(λi) is an affine cover.

We now proceed by reverse induction on q. If q > r, we are done. Now, from Monday, we
had a surjection:

O(−m1)⊕m2 → E
for M1,M2 sufficiently large. So we get a short exact sequence:

0→ F → O(−m1)⊕m2 → E → 0

Then from the long exact sequence, we get that

Hq(O(−m1)⊕m2 → Hq(E)→ Hq(F)

is exact. The leftmost term is finite dimensional, by the computations from Wednesday. The
rightmost term is finite dimensional by reverse induction, so dimkH

q(E) <∞.
For Serre’s vanishing theorem, note that

0→ F ⊗O(N)→ O(N −m1)⊕m2 → E ⊗O(N)→ 0

4though we can do this with a more interesting base
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is also exact. We get:

Hq(O(N −m1)⊕m2)

for N � 0, by Wed.

// Hq(E(N)) // Hq+1(F(N))

for N � 0, by induction

0 0

for q ≥ 1. So Hq(E(N)) = 0 for N sufficiently large, which completes our proof.

March 30 – Hilbert Series. We work on projective space over a field. Let A be a coherent
sheaf on Pr (or anything projective over k). Define χ(A) =

∑
q(−1)qdimHq(Pr,A). From

Friday’s lecture, this is a sum of finitely many finite terms.

Proposition. If 0→ A→ B → C → 0 is a short exact sequence, then χ(B) = χ(A) +χ(C).

Proof. Take the alternating sum of dimensions in the long exact sequence. �

Set HilbA(n) := χ(A(n)), so the short sequence 0 → A → B → C → 0 is exact. Then
0 → A(n) → B(n) → C(n) → 0 is exact, so we have HilbB(n) = HilbA(n) + HilbC(n). By
Serre vanishing, for n� 0, HilbC(n) = dimH0(C(n)).

Proposition. HilbC(n) is a polynomial in n, deg ≤ r.

Proof. Induct on r. The base case is r = 0. The projective space P0 is simply a point, C is
a vector space and HilbC(n) = dim of that vector space = const.

Embed Pr−1 in Pr as the hyperplane {zr = 0}. Then we have a short exact sequence

0→ K → E ·zr−→ E(1)→ C → 0

where K and C are the kernel and cokernel of multiplication by zr. Note that K and C are
supported on Pr−1, so they are pushed forward from schemes supported on Pr−1, and we
have

HilbE(1)(n)− HilbE(n) = (polynomial of degree ≤ r − 1).

The left hand side is HilbE(n + 1) − HilbE(n), so HilbE(n) is a polynomial of degree ≤ r as
desired. �

The degree of the Hilbert polynomial is easy to explain: It is dim Support(E). Call this
d. If E = OZ , the leading term of the Hilbert polynomial is (degZ)nd/d!. Similarly, if E is
a rank s vector bundle on Pr, then the leading term is snr/r!. These facts can be proved by
Noether normalization or repeated slicing.

April 1 – Hilbert series for many line bundles. Let X be projective over k, and let
L1, . . . , Ls be line bundles on X. For a coherent sheaf E on X, write

E(a1, . . . , as) = E ⊗ La11 ⊗ . . .⊗ Lass
hE(a1, . . . , as) = χ(E(a1, . . . , as))

Today, we’ll show that hE is a polynomial on Zs.
Before we start this, we will explore a consequence of Serre’s vanishing theorem.

Lemma. Let X be projective over k, let L be any line bundle on X, and let H be an ample
line bundle on X. Then L⊗H⊗N is ample for N sufficiently large.
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Proof. See Proposition III.5.3 in Hartshorne. The moral of the proof is that ample sheaves
give us room to do what we need: we see that they ‘separate points’ (i.e. we get a surjection
H0(L)� k ⊕ k) and that they ‘separate tangent vectors’ (i.e. we get a surjection H0(L)�
Lx/m

2
xLx). �

This lemma provides evidence for the idea that the ample line bundles form an ‘open cone’
in Pic(X), as “sliding a line bundle L in the direction of an ample line bundle H eventually
lands one among the ample line bundles”. Some other evidence for this idea includes are that
ample line bundles are closed under tensor products (i.e. “closed under addition”), and that
if H⊗N is ample, then H is also ample (i.e. “closed under positive rescaling”). If we allow
ourselves to formally rescale by any positive rational number, we can rephrase the lemma as
saying: If H is ample, and D is anything, then H + (1/N)D is ample for large N , making
it look even more like an open condition. This idea of defining ampleness for elements of
PicX ⊗ R can be made precise, and is common in birational geometry.

Now, back to our original setting.

Proposition. Let X be projective over k, L1, . . . , Ls be line bundles, and E be a coherent
sheaf on X. Then

(a1, . . . , as) 7→ χ(E ⊗ L⊗a11 ⊗ . . .⊗ L⊗ass )

is a polynomial on Zs.

Proof. Let H be ample, then by replacing (L1, . . . , Ls) by (L1 + nH, . . . , Ls + nH), we may
assume that the Li’s are very ample. We proceed by induction on both s and dim Support(E).
Choose a section z of Ls not containing the generic point of any component of Support(E),
then there is a short exact sequence

0→ E ⊗ L−1
s

·z−→ E → E/zE → 0

It follows that

hE(a1, . . . , as)− hE(a1, . . . , as−1, as − 1) = hE/zE(a1, . . . , as).

Then, hE/zE(a1, . . . , as) is polynomial by induction on dim Support(E), and h(a1, . . . , as−1, 0)
is polynomial by induction on s. Consequently, we can write

h(a1, . . . , as−1, as) = h(a1, . . . , as−1, 0) +
as∑
k=1

h(a1, . . . , as−1, k)− h(a1, . . . , as−1, k − 1)

=
as∑
k=1

poly(a1, . . . , as−1, k) + poly(a1, . . . , as−1)

�

April 3 – Hilbert polynomials and intersection theory. Today we talked about the
leading term of the Hilbert polynomial in several variables. Throughout the day we con-
sidered X, a projective scheme over a field k, and L1, . . . , Ls line bundles over X. For E a
coherent sheaf, recall the notation E(a1, . . . , as) = E ⊗ La11 ⊗ · · · ⊗ Lass .

Last time we introduced the polynomial hE(a1, . . . , as) = χE(a1, . . . , as). We usually study
the leading term of this polynomial when E = OX and X is a surface. From Riemann-Roch,
we already know that when X is a curve, we have that hOX

(a1, . . . , as) =
∑
aj degLj−g+1,

so that the leading term is given by the degree.
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Let us consider a surface X with line bundles Lj , where we let Lj = O(Dj), for some
divisors Dj. If we consider two line bundles, then

hOX
(a1, a2) = χ(La11 ⊗ La22 ) = χ(a1D1 + a2D2) =

∑
i,j=0,1,2

cija
i
1a
j
2.

We know that c00 = χ(OX). Let us study c11. We notice that

c11 = h(a1, a2)− h(a1 − 1, a2)− h(a1, a2 − 1) + h(a1 − 1, a2 − 1).

Using the SES
0→ L−1

1 → O → OD1 → 0,

we can deduce that h(a1, a2) − h(a1 − 1, a2) = hOD1
(a1, a2) and also that h(a1, a2 − 1) −

h(a1 − 1, a2 − 1) = hOD1
(a1, a2 − 1). Hence we need to study the difference hOD1

(a1, a2) −
hOD1

(a1, a2 − 1). Let us consider z a section of L2 not vanishing on any component of D1.
If L2 is very ample, such a section exists. Moreover, let us consider D2 to be the divisor
defined by the vanishing of z and let D1 ∩D2 be the scheme-theoretic intersection of these
two divisors. Then multiplication by z gives us the short exact sequence

0→ OD1 ⊗ La11 ⊗ La2−1
2 →·z OD1 ⊗ La11 ⊗ La22 → OD1∩D2 ⊗ La11 ⊗ La22 → 0.

Now D1 ∩D2 is 0-dimensional so that

c11 = χ(OD1∩D2 ⊗ La11 ⊗ La22 ) = χ(OD1∩D2) = #(D1 ∩D2),

where the points of intersections are counted with multiplicity.
A similar discussion holds for the other coefficients of hOX

for any number of line bundles
s, so that

hOX
(a1, . . . , as) =

∑
i,j

#
(Di ∩Dj)

2
aiaj + (lower order terms).

We remarked that when ai = aj this formula gives us a symmetric bilinear form PicX ×
PicX → Z defined by < O(D1),O(D2) >= #(D1 ∩ D2), where the intersection points are
counted with multiplicity and D1, D2 have no common component. Moreover, it is interesting
to notice that this formula generalises in the obvious way for schemes of dimension d.

We concluded the class with a few examples. Letting X = Pr, we have that

χ(O(n)) =

(
n+ r

r

)
=
nr

r!
+ (lower order terms).

In particular, this shows that r hyperplanes in Pr intersect in 1 point. For X = P1 × P1,
the symmetric quadratic form can be represented by the matrix ( 0 1

1 0 ). This example allows
us to construct divisors can negative self intersection. More interestingly, we can use the
Hilbert polynomial to show that the exceptional divisor in the blow up of P2 at a point has
self intersection -1.

April 6 – Finite flat families. Today we discuss finite flat morphisms, and intuition
for them. We first remind ourselves about finite morphisms, which we learned about last
semester.

Recall that π : Y → X is finite if for every open affine SpecA ⊂ X, its inverse image
π−1(SpecA) equals SpecB, and the induced ring homomorphism π∗ : A → B is module-
finite. Recall that by Ex. II.3.4, it suffices to check this property on an affine cover. Recall
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also that finite morphisms are closed by Ex. II.3.5(b), and that finiteness is closed under base
change, i.e., if π is finite in the cartesian square below, so is π′:

X ′ ×X Y //

π′
y
��

Y

π
��

X ′ // X

In the particular case when X ′ = {x} a point in X, we defined the scheme-theoretic fibre
at x, denoted π−1(x), to be the fibre product

π−1(x) //

y
��

Y

π

��

Spec k(x) // X

and defined the length of the fibre as `(π−1(x)) = dimk(x)O(π−1(x)) = dimk(x) π∗OY ⊗OX

k(x). Last semester, we proved the following for varieties over algebraically closed fields:

Theorem. Let π : Y → X be a finite morphism of locally noetherian schemes. Then,
x 7→ `(π−1(x)) is an upper semicontinuous function on X.

In commutative-algebraic language, if SpecA is an open affine subset of X, with preimage
SpecB, and if p ⊂ A is a prime ideal, then `(π−1(p)) = dimFracA/pAB ⊗A Frac(A/pA).

For examples, refer back to the Updates on 10/06 and 10/08 from last semester, and for
the proof of the Theorem, refer to the Update on 10/10. The Theorem is also Ex. II.5.8(a).

Now, let’s introduce flatness:

Theorem-Definition. Let π : Y → X be a finite morphism of locally noetherian schemes,
where X is reduced. Then, the following are equivalent:

(1) `(π−1(x)) is locally constant;
(2) the OX-module π∗OY is a locally free OX-module;
(3) the OX-module π∗OY is flat as an OX-module.

In this case, we say that π is finite and flat .

Proof of (1)⇔ (2). ⇐. Let x ∈ X such that (π∗OY )x ∼= OX,x. Then by Ex. II.5.7(a), there
is an open subset U 3 x on which (π∗OY )|U ∼= OU .
⇒. Let v1, . . . , vr be r generators of π∗OY ⊗OX

k(x). Then by Nakayama’s lemma, these
generators lift to generators of OY , and we have a surjection ϕ : O⊕rU → π∗OY after possibly
passing to an open neighborhood of x. We want to show this map is injective. Passing to
affine opens SpecA ⊂ X and SpecB = π−1(SpecA) ⊂ Y , we have that Ar ⊗A k(p)→ B ⊗A
k(p) is a vector space isomorphism for every p ∈ SpecA. But this implies kerϕ ⊂

⋂
p⊂A pA

r.
Since X is reduced, kerϕ = 0. �

Note that (1)⇐ (2) did not use the reduced hypothesis, while it is necessary in (1)⇒ (2).
For example, if Y = Spec k and X = Spec k[x]/x2, with Spec k → Spec k[x]/x2 the obvious

map and p ∈ X the unique point, then π∗OY = k̃ is not locally free on X, even though
`(π−1(p)) = 1.

Proof of (2)⇔ (3). (not done in class). (2) =⇒ (3) Flat is a local condition, and free
clearly implies flat, so locally free implies flat.
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(3) =⇒ (2): Again, the question is local, so we may assume that X = SpecA for a
local ring A with maximal ideal m and A/m = k. Let Y = SpecB. Pick generators v1, v2,
. . . , vr for the (necessarily finite dimension) k vector space B/mB, and lift them to u1, u2,
. . . , ur ∈ B. Then we have a map Ar → B sending the j-th generator of Ar to ur. This
map is surjective by Nakayama. Let the kernel be K, so we have 0 → K → Ar → B → 0.
Tensoring with k, we have the exact sequence TorA1 (B, k) → K/mK → kr → B/mB → 0.
But TorA1 (B, k) = 0 since B is flat, and kr → B/mB is an isomorphism by construction, so
K/mK = 0. By Nakayama, this shows that K = 0. So Ar ∼= B. �

April 8 – Flatness. Given a commutative ring A, and A−modules M,X, Y, Z, with s.e.s
0→ X → Y → Z → 0, then we get an exact sequence

M ⊗X →M ⊗ Y →M ⊗ Z → 0

However, we may not have injectivity in the left map.

Example. Let A be a domain, f ∈ A and M an A-module with f−torsion. Then 0 →
A

f−→ A → A/fA → 0 is exact, and M
f−→ M → M/fM → 0 is exact, but we don’t have

injectivity on the LHS.

Definition. M is called flat if whenever X injects into Y , the map M ⊗X →M ⊗ Y is an
injection.

Proposition. M flat over a domain ⇒ M is torsion free. Flatness over a PID, or more
generally, over a Dedekind domain ⇐⇒ Torsion free.

Proof. It is enough to show that for I ⊆ A, I⊗M →M is injective. For a PID, any I = (f),
thus, I ⊗M = (f)⊗M →M , map is given by af ⊗m 7→ af ·m. And this map is injective
if and only if M has no f−torsion. �

Proposition. Flatness is local, i.e., if ∀P ∈ SpecA,MP is AP−flat, then M is A-flat.

Proof sketch. Injectivity is local. �

Also, S−1A is always A flat and S−1M is S−1A-flat if M is A-flat.
For M,N A-modules, there exists a sequence of modules TorAi (M,N) where i ∈ N.

Tor0(M,N) = M ⊗N . ∀ s.e.s 0→ X → Y → Z → 0, we have the following l.e.s:

Tor2(M,X) Tor2(M,Y ) Tor2(M,Z)

Tor1(M,X) Tor1(M,Y ) Tor1(M,Z)

M ⊗X M ⊗ Y M ⊗ Z 0

Sketch of construction: take a resolution · · · → F2 → F1 → F0 → M → 0 with Fi
projective or free. and then Tori(M,N) = Hi(N ⊗ F•). By chasing double complexes, we
get Tori(M,N) ∼= Tori(N,M).

Proposition. M is A−flat if and only if Tor1(M,N) = 0,∀N ⇐⇒ Torj(M,N) = 0∀j ∈ N

Corollary. If 0→M1 →M2 →M3 → 0 is exact , then M1,M3 flat implies M2 flat. M2,M3

flat implies M1 is flat.
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By the exact sequence: Tor2(M3, N) → Tor1(M1, N) → Tor1(M2, N) → Tor1(M3, N),
we have the two modules on both sides are 0, and one of the two modules in the middle is
also 0, thus the remaining one has to be 0.

Proposition. M is finitely generated A-module, A is Noetherian, then M is flat ⇐⇒ M
is locally free.

Definition. X a scheme, E a quasi-coherent sheaf on X. We say E is OX−flat if E(SpecA)
is A−flat for open affines SpecA. It is enough to check on open covers and furthermore, on
stalks when X is Noetherian.

Remark. E is coherent, then it is OX−flat ⇐⇒ E is locally free ⇐⇒ E is a sheaf of
sections of a vector bundle E → X.

Definition. π : Y → X a map of schemes is flat if ∀y ∈ Y , OY,y isOX,π(y)−flat. Equivalently,
∀y ∈ Y there exists SpecA 3 π(y), open in X and SpecB ⊆ π−1(SpecA) open in Y , such
that B is flat over A.

For example, any open inclusion is flat since localization is flat. U ↪→ X also it is not
necessarily finite. Since ⊗ is associative, we have composition of flat maps is flat.

April 13 – Gröbner Degeneration. Suppose we have a subscheme Z1 ⊂ X and want to
find interesting degenerations. Given an action of the multiplicative group Gm = Spec k[t, t−1]
or the additive group Ga = Spec k[t] onX, we can compactify Gm to B = A1 or Ga to B = P1.
Take Z ⊂ X ×Gm (or X ×Ga) to be {(z, g) : g ∗ z ∈ Z1}. Take the closure in X × B and
take the fiber over 0.

Ex: X = A2. Suppose Gm acts by t · (x, y) = (tx, ty). If Z1 ⊂ A2 = 〈xy − 1〉, then
Z ⊂ A2 ×Gm = {(x, y, t) : (tx)(ty)− 1 = 0}. The fiber over 0 is Z0 = ∅.
If instead we took the action t · (x, y) = (t−1x, t−1y), then Z = {(x, y, t) ∈ A2 × Gm :
(t−1x)(t−1y)− 1 = 0}, so that Z0 = {xy = 0}.

For H ⊂ Aut(X), if G,H commute and Z1 is H-invariant, then Z0 is H-invariant. Z0 is
also G-invariant, where G acts on Z by g · (g1, x) = (g1g

−1, gx).

Special case: For X = An, G = Gm acts diagonally by t ·

x1

· · ·
xn

 =

tw1x1

· · ·
twnxn

.

We get a degeneration from Z1 ⊆ An to Z0 ⊆ An with invariance by this 1-parameter
subgroup of Gn

m. Every closed subscheme of An has a flat degeneration to a Gn
m-invariant

subscheme of An.
Claim: I is torus-invariant if and only if I is monomial.

Proof: Clearly, if I is monomial then it is torus invariant.
Suppose I is torus-invariant. Let M be the set of monomials in I. We want to show 〈M〉 = I.
Given f ∈ I, write f =

∑
A∈E fAx

A. Then
∑

A∈E fAt
A1
1 · · · tAn

n xA ∈ I, so xA ∈ I for A ∈ E,
and so f ∈ 〈M〉.

April 15 – The semicontinuity theorem. We will show that cohomology groups ”jump
up” in flat families.

The question we want to answer is the following:

Question Let B be a base, and X be a proper and flat over B, and let π : X → B. As
we approach some b0 ∈ B, how do the fibers π−1(b) change?
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Theorem. Let B is noetherian, X is projective over B (i.e., closed subscheme of PrB) and
E be coherent sheaf of X. The the function b 7→ dimk(b) H

q(π−1(b), E|π−1(b)) is upper semi-
continuous: that is, it only ”jumps upward” (if it does).

The proof we will present (next class) will be very close to R. Vakil’s proof from his “Rising
sea” chapter 28. One can also find the theorem in Hartshorne III.12.

This is only one of many theorems which say how things change as we specialize in flat
families. Here are some other examples: Facts

i Number of connected components of π−1(b) is lower semicontinuous over a normal
base

ii {b : π−1(b) is singular} is closed
iii Rule of thumb: As you go more towards special fibers, things become more singular

and more combinatorial.

Example. ”Jumping up” actually can happen Take a twisted cubic X in P3, and degenerate
it to a nodal cubic X ′ in a plane with nonreduced point in the node. X ′ can also be considered
as a degeneration of X ′′, which is a disjoint union of a nodal cubic in a plane and a point
outside of the plane. Then, we see that

H0(X,O) = k,H0(X ′′) = k2,

and we can check that H0(X ′) = k2: We have restriction map H0(X ′,O)� H0(α,O) = k,
where α: nodal cubic. And the kernel of the surjection is k (take the defining equation of
the hyperplane containing the curve near the singular point...)

Example. Why do we need flatness In P1 × A1, and look at

{((x0 : x1), t) : t(x0 − x1)(x0 + x1)}
When t 6= 0, fiber is two points, so H0 = k2 and when t = 0, fiber is P1, so H0 = k.

Towards the proof of the main theorem Our question is local on B, so say B =
SpecA. Hq(X, E) is an A-module, and further it is even a finitely generated A-module (we
showed this when A: field, and same argument works for A: Noetherian).

We see that
p 7→ dimA/pH

q(X, E)/pHq(X, E)

is upper semicontinuous. However, sadly, dimA/pH
q(X, E)/pHq(X, E) 6∼= Hq(π−1(p, E|π−1(p))

(see cohomology and base change theorem).
What does work, however, is Mumford’s cool lemma!
Before we introduce Mumford’s lemma, let’s recall some results from commutative algebra.

Lemma. Let A be a commutative ring, and X• be an exact complex of A-modules. If M :
flat A-module, then M ⊗X• is also exact.

Proof. This follows because a functor M ⊗ − takes a SES to a SES when M is flat. See
Atiyah-Macdonald Proposition 2.19. (Our definition of flat module was that M ⊗ − sends
SES to a SES. AM’s definition of flat module is that tensoring with the module transforms
all exact sequences into exact sequences. The two notions are equivalent due to proposition
2.19). �
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Lemma. Again, let A be a commutative ring and X•, Y • be complexes of A-modules. If
X• → Y • is a quasi-isomorphism, and M is a flat A-module, then X• ⊗M → Y • ⊗M is a
quasi-isomorphism.

Proof. Remember that X• → Y • is a quasi-isomorphism iff the mapping cone C• is exact
(See Weibel Corollary 1.5.4). Thus, using the previous lemma, we get
X• → Y • is a quasi-isomorphism ⇐⇒ C• is exact ⇐⇒ C•⊗M is exact ⇐⇒ X•⊗M →

Y • ⊗M is a quasi-isomorphism.
�

Now we present Mumford’s cool lemma

Lemma. (Mumford) Let A: commutative Noetherian ring. Let C• be a complex of A-
modules such that Cn = 0 for n >> 0 and Hq(C•) be finitely generated A-module. Then
there is a complex K• of finitely generated A-modules and a map K• → C• which is a
quasi-isomorphism.

This means that as long as Hq(C•) is f.g, we can replace C• by a complex K• of finitely
generated A-modules. We will present the proof of the lemma in next class.

April 17 - The Semicontiuity Theorem concluded. Today’s goal is to go through the
proof of the semicontinuity theorem. This approach is also discussed in Chapter 28 of Vakil’s
book.

Lemma (Mumford). Suppose A is a noetherian ring, C• is a complex of A-module such
that Cn = 0 for n� 0, and also Hq(C•) finitely generated. Then there exists a complex K•

of finitely generated free A-modules with a quasi-isomorphism K• → C•.

Proof sketch. Suppose we have inductively built the diagram as below:

Ki Ki+1 · · ·

· · · Ci+1 Ci Ci+1 · · ·

δi

such that Hq(K•)→ Hq(C•) for q > i+1 and ker(δi) surjects onto H i(C•). Now we choose a
surjection p : AN � ker(ker(δi)� H i(C•)) and lift the image of each generator of AN in Ci

to Ci+1, as each generator of AN maps down to 0 in H i(C•). So we get a map σ : AN → Ci−1

that makes the following diagram commutes:

AN Ki Ki+1 · · ·

· · · Ci+1 Ci Ci+1 · · ·

pN

σ

δi

Lastly, we choose a surjection AM � H i−1(C•), and lift this map to pM : AM → Ci−1, so we
get the following commutative diagram:
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AM ⊕ AN Ki Ki+1 · · ·

· · · Ci+1 Ci Ci+1 · · ·

(0, pN )

(pM , σ)

δi

Now this gives a quasi-isomorphism between K• and C•, hence we are done. �

We also note there is a variant: If Ci are flat and Ci = 0 for i < 0, then we may take
K0, · · · , Kn as finitely generated free modules, K−1 as finitely generated flat module (locally
free), and K−1 = 0 for i < −1.

Theorem (Semicontinuity Theorem). B is a noetherian scheme, E is a coherent sheaf on
PrB, and E is OB flat. Then dimHq us an upper semicontinuous function on B.

Proof. This statment is local on B, so we can take B = SpecA. Now we have a Čech complex
C• on PrB as below: ⊕

E(Ui)→
⊕
E(Uij)→ · · ·

which is a complex of flat A-modules. For any p ∈ SpecA, Hq of E on fiber over p is
computed by Hq(C• ⊗A Frac(A/p)). By Mumford’s lemma, we may build the complex K•

such that K• → C• is a quasi-isomorphism. Since all Ki and all Ci are flat, we have
K• ⊗A Frac(A/p) → C• ⊗A Frac(A/p) is still a quasi-isomorphism. Explicitly, as Ki ∼= Abi

for some bi, the map Ki δi−→ Ki+1 is given by some bi+1 × bi matrix with entries in A. Now
we want to show dimk(p) H

q(K• ⊗A k(p)) is upper semicontinuous. Since

dimHq = dim ker(δq)− dim Im(δq−1)

= dimKq − Rank(δq)− Rank(δq−1)

= constant− (l.s.c.)− (l.s.c.),

our conclusion hence follows. �
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