
GLn REPRESENTATION THEORY NOTES FOR 12-03

SCRIBE: JAKE LEVINSON

As with the last lecture, this one is based on John Stembridge’ s paper: A local characterization
of simply-laced crystals, Trans. Amer. Math. Soc. 355 (2003), no. 12, 4807–4823.

1. Recall

Last class, we defined regular crystals. These are crystals with the property that

• If |i− j| ≥ 2, then we can “fill in squares”:

impliesi

j

i

j

i

j

• If |i− j| = 1, then i changes lengths of j-strings by ±1, and vice versa:

• and a few other specific rules (see the previous lecture).

2. Theorem for today

Today’s main results are the following two theorems:

Theorem 1 (Stembridge). A finite connected regular crystal has unique high weight element.

Theorem 2 (Stembridge). If B and B′ are finite connected regular crystals with high weight ele-
ments u and u′, and if wt(u) = wt(u′), then B ∼= B′.

All the hard work takes place in the following lemma:

Lemma 1. Let B be a regular crystal, u a high weight vector, and v ∈ B with

v = ekfir · · · fi2fi1u, for some k, i1, i2, . . . , ir ∈ {1, . . . , n− 1}.
Then in fact

v = fjr−1 · · · fj1u for some j1, . . . , jr−1 ∈ {1, . . . , n− 1}.
In other words, it’s possible to ‘omit’ the upwards step ek, and get from u to v just using ‘downwards
steps’ fi`.

Proof. By induction on r. If r = 0, eku = 0 since u is high weight, and 0 /∈ B, this is a contradiction.

For r > 0, let’s say we have... (rest of proof is in the diagram)

u w

v

x

i1 i2 ir−1
ir

k

f

e

There are three cases. First of all, if ir = k, then v = w, so we’re done. Second, if |ir−k| ≥ 2, then
we can “fill in the square” to get:
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So, in other words, we have

u w
y

i1 i2 ir−1

k

so by induction,

u y v.
j1 j2 jr−2 ir

In the third case, |ir − k| = 1. This splits into three sub-cases: first,

w x v
ir k

is a contradiction.

Next, to deal with

w

x

v

ir

k
and

w

x

v

ir

k

we use the “filling in squares” axiom and continue as in case 2. Finally, if both arrows point out of
x, we have to use the ‘diamond-shaped’ axiom to pull back two steps:

u
i1 ir−1

w

x

v

ir

k

w1

v2

v1

w2

y

Inductively, we can pull back three times in a row: we get a line of arrows from u to w1; then from
u to w2; then from u to y. Finally, we fill in the arrows

u y v1 v2 v.

This completes the proof. �

Corollary 1. If B is regular, u is high weight, v in the same connected component as u, then

v = fjs · · · fj1u.

Proof. Write v in terms of u using both e’s and f ’s, then eliminate e’s using the lemma. �

Question: How should we think about this proof? Here are some scattered thoughts, added
by David.

One should compare this to the proof that every gln irrep V has a unique high weight vector
u. The key lemma was that, for u high weight, the vectors fir · · · fi2fi1u span V . To show this, it
was enough to show that ekfir · · · fi2fi1u is in the span of vectors of the form fjr−1 · · · fj1u. See the
November 21 notes for a very similar argument in the Lie algebra setting.

A better way, perhaps, to understand the argument of Nov. 21 is through the PBW theorem.
The (easy part of the) PBW theorem shows that U(gln) is spanned by monomials of the form(∏

i>j E
aij
ij

)(∏
dE

bk
kk

)(∏
i<j E

cij
ij

)
. From this, we conclude that V is spanned by vectors of the

form
(∏

i>j E
aij
ij

)(∏
dE

bk
kk

)(∏
i<j E

cij
ij

)
u. But such a vector is 0 unless all the cij are 0 (since u

is high weight) and in that case is proportional to
(∏

i>j E
aij
ij

)
u (since u is a weight vector).

If we had something like the universal enveloping algebra for crystals, we could imagine showing
that this algebra was spanned by monomials where we do all of the e’s first, and then all of the f ’s.
Since any e annihilates u, and we know that we can get to anywhere in B by applying e’s and f ’s
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to u, this shows that we can get anywhere from u by doing the e’s first. I am not familiar with a
universal-enveloping-algebra like object for crystals, but in the appendix I give a proof like this.

3. Proofs of Theorems 1 and 2

Now we can prove Theorem 1 above (uniqueness of high-weight vectors in finite connected regular
crystals).

Proof of Theorem 1. First, any finite crystal has a high weight element (apply e operators, which
increase the weight, until we can’t anymore). Suppose u and v 6= u are both high weight. By the
above corollary,

v = fjs · · · fj1u.
Then ejsv 6= 0, a contradiction. �

Remark. This is exactly like the corresponding proof for gln, namely: if you have a high weight
vector, and you know you can reach any other vector by (only) going downwards, then there’s no
room for any other high weight vector.

An important observation is the following: if B is a crystal and u is high weight, then its weight
vector is decreasing, that is, wt(u) = (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn. To see this, consider the
i-string through u:

v f2i u fiu u

Then we see that

wt(v) = si wt(u) = (λ1, λ2, . . . , λi+1, λi, . . . , λn),

and so

wt(v) = wt(u) + φ · (0, 0, . . . ,−1, 1, . . . , 0),

so λi+1 = λi − φ. Thus λi+1 ≤ λi. We will use this fact in our proof of the second theorem.

Proof of Theorem 2. Let wt(u) = wt(u′) = (λ1, . . . , λn) be the common high-weight vectors of
the two crystals B and B′. Define height functions h : B → Z and B′ → Z as follows: if
wt(b) = (κ1, . . . , κn), then

h(b) =

n∑
i=1

(κi − λi)i.

In particular,

h(fib) = h(b) + 1 if fib 6= 0,

and similarly

h(eib) = h(b)− 1 if eib 6= 0.

We show, by induction on r, that there is a bijection between

B≤r := {b ∈ B, h(b) ≤ r}
and the corresponding set B′≤r, such that

• The bijection commutes with ei and fi as maps within B≤r t {0} and B′≤r t {0},
• The bijection preserves the quantities εi(b) and φi(b) (which measure the distance from b

to the ends of the i-string through b.

Since our crystals are finite, when r is large enough, this gives a bijection B ↔ B′ commuting with
ei, fi. (David said: finiteness is not as important as I’m making it sound – the paper this proof
comes from doesn’t always require it. But we’re assuming finiteness for simplicity.)

The base case is r = 0. In this case B≤0 = {u} and B′≤0 = {u}: the map is obviously bijective,

and it “agrees” with the ei’s, since eiu = e′iu
′ = 0 for any i. The maps fi all map out of these sets,

so we don’t need to verify anything else. This shows that the first property holds.
For the second property, note that u is at the e-end of its i-string, so εi(u) = 0 and φi(u) =

λi − λi+1. The same fact holds for u′.
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At this point, the rest of the proof is essentially an exercise: it suffices to show that the f arrows
act appropriately (since any point can be reached just using f arrows, by the Lemma); and then
it’s just a matter of considering the various ways f arrows can come together, and applying the
various axioms of regular crystals.

Proof continued on 12/05. For the inductive case, suppose we have α : B≤r → B′≤r. We
wish to extend this bijection to r + 1.

We know that every b ∈ Br+1 is fic for some i and some c ∈ Br. First of all, we observe that

fic = 0 if and only if fiα(c) = 0.

To see this, note that the first statement is equivalent to φi(c) = 0, and similarly for the second.
(The bijection α preserves φi by induction). In other words, α induces a bijection between

{(c, i) : c ∈ Br, i ∈ {1, . . . , n}, fic 6= 0}

and the corresponding set for B′r. To construct α on Br, we show that

fi(c1) = fj(c2) if and only if fi(α(c1)) = fj(α(c2)), for all c1, c2 ∈ Br, 1 ≤ i, j ≤ n− 1.

(We only need to prove the forward direction, since the situation is symmetric between Br and B′r.)
We’ll also need to check that the new α still preserves εi, φi.

If i = j, then

fic1 = fic2 if and only if c1 = c2,

so the claim follows immediately.
Next, if |i− j| ≥ 2, then we have the picture

f c1

b

c2

d

i j
ij

(Read this like a commutative diagram asserting an ‘existence’ statement: assuming the existence
of the solid lines, the regularity axioms imply that we can fill in the dashed lines.) Apply α to the
picture: by induction, we get

f α(c1)

b′

α(c2)

α(d)

i j
ij

This shows that fiα(c1) = fjα(c2) = b′.
Finally, if |i − j| = 1, there are four cases (based on the orientations of the edges). The most

interesting case is

c1

b

c2

Here we use the last regularity axiom (governing the ‘diamond-shaped’ arrow setup) to pull
back two steps; then apply α throughout. Finally, we use regularity again to find a b′ mapping to
α(c1), α(c2).

Now we’ve defined α everywhere; we need to show it still preserves εi and φi. So let b = fic as
earlier; we want to consider εi(b), φi(b).

If i = j,

φi(c) = φi(b)− 1 and εi(c) = εi(b) + 1.



GLn REPRESENTATION THEORY NOTES FOR 12-03 5

If |i− j| ≥ 2,
φi(c) = φi(b) and εi(c) = εi(b).

As usual, the case |i− j| = 1 is the interesting one. For simplicity, take j = i+ 1. First of all, we
know α commutes with ei, so in particular,

ei(b) = 0 if and only if ei(α(b)) = 0.

Note that in this case εi(b) = εi(α(b)) = 0, and we can compute φi(b) from

wt(b) = wt(c) + (0, . . . , 0, −1︸︷︷︸
i+1

, 1︸︷︷︸
i+2

, 0, . . . , 0)

= wt(α(c)) + (0, . . . , 0, −1︸︷︷︸
i+1

, 1︸︷︷︸
i+2

, 0, . . . , 0).

So φi is preserved.
Otherwise ei(b) 6= 0, we break into some more cases. In each case, the regularity axioms show

that the orientations of the fi+1 edges b–c2 and α(b)–α(c2) match. Then we can compute εi(b), φi(b)
from the knowledge of εi(c2), φi(c2) and this orientation. �

Appendix: An alternate route to Corollary 1 (Added by David)

I don’t know whether the following proof of Corollary 1 will seem more or less clear, but I
present it as an alternate perspective. Let B be a finite connected regular crystal, and let u and
v be elements of B. Consider all ways to write v = grgr−1 · · · g2g1u for some sequence of crystal
operators gr · · · g1. We assign a score to each letter gj . If gj is an f , the score is 0. If gj is an e,

then the score is 2h(gj−1gj−2···g1u) where h is the height function (so f ’s increase height, e’s decrease
height and height is always ≥ 0). The score of the expression gr · · · g2g1u is the sum of the scores
of each letter.

Suppose that the word g• contains · · · eifj · · · at some point. We can now make the following
replacements:

• If i = j, we can delete the pair eifi. This removes one letter (that ei) which contributes
positively to the score and maintains the score of every other letter; hence it decreases the
score.
• If |i− j| ≥ 2, we can replace eifj by fjei. This changes the score of that ei from 2h to 2h−1

(for some h) and keeps all other scores the same.

• If |i− j| = 1 and the edges corresponding to these letters are oriented as
ei−→

fj−→ or
ei←−

fj←−,
then we may replace eifj by fjei. As above, this changes the contribution of that ei from

2h to 2h−1.

• If |i − j| = 1 and the corresponding edges are oriented as
ei←−

fj−→, then we may replace
eifj by fjfjfiejeiei. This removes a letter with score 2h and inserts new letters with scores

2h−1 + 2h−2 + 2h−3 = (7/8)2h.

Thus, whenever we have eifj , we can decrease the score. But the score is a positive integer, so
it cannot decrease forever. So, if we keep making the above replacements, we will eventually get to
a word which is of the form fff · · · fe · · · eee.

In particular, if u is a hight weight element, we will eventually get to a formula v = fjr · · · fj2fj1u,
since u is annihilated by every ei.


