
NOTES FOR DECEMBER 5

RACHEL KARPMAN

1. Uniqueness of Connected Regular Crystals

Last time, we stated the following theorem. If B and B′ are finite, connected regular crystals
with high weight elements u and u′ such that wt(u) = wt(u′) = λ, then B ∼= B′. Let’s prove this.

For b ∈ B ∪ B′ with wt(b) = (k1, . . . , kn), let ht(b) =
∑n

i=1 i(ki − λi). Then ht(eib) = ht(b)− 1,
and ht(fib) = ht(b) + 1.

Define Br = {b ∈ B | ht(b) = r} and B′r = {b′ ∈ B′ | ht(b′) = r}. Set B≤r = {b ∈ B | ht(b) ≤ r}
and B′≤r = {b′ ∈ B′ | ht(b′) ≤ r′}.

We will show by induction on r that there is a bijection α : B≤r → B′≤r such that

• α commutes with ei and fi, whenever these map within B≤r t {0} and B′≤r t {0}.
• α preserves εi and φi, where

εi(b) = max{k | eki (b) 6= 0}

φi(b) = max{k | fki (b) 6= 0}
For the base case, let r = 0. B≤0 = {u}, B′≤0 = {u′}. We have εi(u) = εi(u

′) = 0, and

φi(u) = φi(u
′) = λi − λi+1.

For the inductive step, say we have α : B≤r → B′≤r. We need to construct

α : Br+1 → B′r+1.

Each b ∈ Br+1 is fic for some i and some c ∈ Br. We claim that for i ∈ {1, 2, . . . , n− 1},
and c ∈ Br, we have fic = 0⇔ fiα(c) = 0.

To prove this, note that we have

fi(c) = 0⇔ φi(c) = 0⇔ φi(α(c)) = 0⇔ fiα(c) = 0

So α induces a bijection between

{(c, i) | c ∈ Br, i ∈ {1, 2, . . . , n− 1}, fi(c) 6= 0}
and

{(c′, i) | c′ ∈ B′r, i ∈ {1, 2, . . . , n− 1}, fi(c′) 6= 0}
To construct α on Br, we must show that fi(c1) = fj(c2) ⇔ fi(α(c1)) = fj(α(c2)) for c1, c2 ∈ Br,
1 ≤ i, j ≤ n − 1. We will also need to check that α preserves εi and φi. It suffices to show the
forward direction, since the problem is symmetric. Let’s take cases.

Suppose i = j. Then fi(c1) = fi(c2)⇔ c1 = c2 ⇒ α(c1) = α(c2)⇔ fi(c1) = fi(c2).
Next, suppose |i− j| ≥ 2. If fi(c1) = fj(c2) = b, we have

c1

b

c2

i j f

then by regularity we have

d

c1 c2

b

j i

i j

1
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And hence, inductively, we have

α(d)

α(c1) α(c2)

j i

So using regularity again, we have

α(d)

α(c1) α(c2)

b′

j i

i j

If |i− j| = 1, we have

c1

b

c2

i i+ 1 f

There are four cases, depending on the orientation of these edges. The most interesting case is

c1

i i+ 1
b

c2

i i+ 1

By regularity, we must have

f

e2 e1

d1 d2

c1 c2

b

Inductively we have

α(f)

α(e2) α(e1)

α(d1) α(d2)

α(c1) α(c2)

We know the arrowheads on the top level of this diagram by the second part of the inductive
hypothesis.
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By regularity, this yields

α(f)

α(e2) α(e1)

α(d1) α(d2)

α(c1) α(c2)

b′

We’ll just sketch the rest of the proof.
Say b = fj(c). We want to consider εi(b) and φi(b). If i = j, then φi(c) = φi(b)−1, εi(c) = εi(b)+1.

If |i− j| ≥ 2, then φi(c) = φi(b) and εi(c) = εi(b).
Suppose |i− j| = 1. For simplicity say j = i+ 1.

c

b

i+ 1

We claim ei(b) = 0 ⇔ ei(α(b)) = 0. This follows since we already made α commute with ei. If
ei(b) = 0 and ei(α(b)) = 0 then εi(b) = εi(α(b)) = 0.

Note that everything we’ve done so far is weight-preserving. So we can compute φi(b) from

wt(b) = wt(c) + (0, · · · , 0,−1, 1, · · · , 0)

= wt(α(c)) + (0, · · · , 0,−1, 1, . . . , 0)

where the −1 occurs at position i+ 1 and the 1 as position i+ 2.
If ei(b) 6= 0, set c1 = ei(b), c2 = c.

c1

b

c2

i i+ 1

We get the same cases, and regularity axioms show in each case that the orientation of edges

c2

b
i+ 1

and

α(c2)

α(b)
i+ 1

have to match up. We can compute εi(b) and φi(b) from εi(c2), φi(c2) and this orientation. This
finishes the proof.

2. Word Crystals are Regular

It’s easy to show that (ei, fi) and (ej , fj) commute for |i− j| ≥ 2. Also, (ei+1, fi+1) changes the
length of the (ei, fi) strings by ±1. We know that ei+1 turns an i+ 2 into an i+ 1. Thus it inserts
an i+ 1 into the (i, i+ 1) mountain range.



4 RACHEL KARPMAN

Inserting an i+ 1 in the region colored red is lengthing; inserting an i+ 1 into the blue region is
shortening.

What’s hard is figuring out the interaction of (i, i+ 1) and (i+ 1, i+ 2). We want to check the
case

b

e1b e2b

We may assume that b = w1w2 · · ·wd where wj ∈ {1, 2, 3}. Let p such that wp = 3 and e2
changes wp from a 3 to a 2. Let r be such that wr = 3 and e1 changes wr to a 1. We may assume
that p < r.

Let’s look at the (2, 3) mountain range. We’ll need to take cases again. After position r, does
the mountain range re-acheive its maximum value of not? If there is no further maximum, then
e1e2b = e2e1b, and both change wp from 2 to 2 and wr from 2 to 1.

b

e1b e2b

e1e2b = e2e1b

The hard case happens when there is another maximum. In this case, let s be the index for the
3 which occurs at the next maximum following r.

3
p

3
s

r
2

Now look at the 1, 2-range. Delete the 1, 2 string before position p, and recompute the lit and
unlit sets. Let q be the position of the rightmost let 2-edge which lies to the left of r.

p

2 q

(If there is no such edge, we are in yet another case.) So we have p < q < r < s. The only letters
which change are in positions p, q, r, s.
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(This material added by David.) We’ll give an example and leave the general proof to the reader.
Let our starting word be 332233.

We have

pqr s

332233
e1−→

332133
e2−→

332132
e2−→

322132
e1−→

321132

and also

pqr s

332233
e2−→

322233
e1−→

322133
e1−→

321133
e2−→

321132

The general pattern looks like this, except that there may be arbitrarily long strings between
positions p, q, r and s.


