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Let d ≤ n. Then Schur-Weyl duality gives us an equivalence of categories:

{Finite dimensional Sd representations} → {Polynomial GLn representations where t · Id acts by td }

Every element of the left hand category has a character, which is a class functton on Sd. Let Λd

denote the vector space of symmetric polynomials of degree d. To every representation in the right
hand category, taking the character assigns an element Λd. So we have a linear map

F : {Class functions on Sd} → Λd.

This map is called the Frobenius character map, and it is the goal of this note to describe it.
For a permutation σ ∈ Sd, let c(σ) be the partition whose parts are the lengths of the cycles of

σ. For example, the identity permutation maps to 1d; a simple transposition maps to 2 1d−1.

1. The h, e and s bases

We can figure out some values of F by looking at the inverse correspondence when n = d.

1.1. The h basis. We know that hλ is the character of the representation
⊗

k Symλk(V ), which
I’ll abbreviate H. I’ll abbreviate the (1, 1, 1, 1, 1, 1, 1) weight space by H0.

For concreteness sake, take λ = (4, 2, 1). Then H0 has as basis elements of the form

(zi1zi2zi3zi4)⊗ (zj1zj2)⊗ zk
where {1, 2, 3, 4, 5, 6, 7} is the disjoint union of {i1, i2, i3, i4}, {j1, j2} and {k}. So a basis for H0

can be indexed by partitions of [d] into sets of size λ1, λ2, . . . , λr. The symmetric group acts by
permuting those set partitions.

If a group G acts by permuting a finite set X, then the character of the permutation represen-
tation CX is

χCX(g) = #(Xg)

In our case, we come to the following conclusion: Let µ = c(σ). Then χH0(σ) is the number
of ways to partition the multiset {µ1, µ2, . . . , µs} into multisubsets whose sizes are (λ1, λ2, . . . , λr).
For example, suppose that λ = (4, 2, 1) and c(σ) = (2, 2, 1, 1, 1). Then χH0(σ) = 9, corresponding
to

(2 + 2, 1 + 1, 1) (2 + 2, 1 + 1, 1) (2 + 2, 1 + 1, 1) (2 + 1 + 1, 2, 1) (2 + 1 + 1, 2, 1)

(2 + 1 + 1, 2, 1) (2 + 1 + 1, 2, 1) (2 + 1 + 1, 2, 1) (2 + 1 + 1, 2, 1)

The coloring is meant to make it clear that we must keep track of the distinct identities of the two
2’s and the three 1’s.

So the character of H0 is the class function

σ 7→ #{set partitions of c(σ) with parts of size (λ1, λ2, . . . , λr)},

and F maps it to hλ.

1.2. The e basis. Similarly, we know that eλ is the character of the representation
⊗

k

∧λk(V ).

Let E =
⊗

k

∧λk(V ) and let E0 be the (1, 1, . . . , 1) weight space. Taking λ = (4, 2, 1) again, E0

has as a basis the products of minors

∆i1i2i3i4∆j1j2∆k.

Once again, our basis is indexed by set-partitions of {1, 2, . . . , n} into sets of size (λ1, λ2, . . . , λr),
but there is a sign factor. We deduce that

E0
∼= H0 ⊗ sign.
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The character of E0 is the class function

σ 7→ (−1)σ ·#{set partitions of c(σ) with parts of size (λ1, λ2, . . . , λr)},
We deduce that this character maps to eλ.

This would have perhaps been a slicker proof that ω corresponds to tensor with sign, since we
know that ω(hλ) = eλ.

1.3. The s basis. We defined the Specht module Sp(λ) to be the (1, 1, . . . , 1) weight space of
Vλ(d). So the character of the Specht module maps to sλ.

2. A general formula

Let f : Sd → C be a class function. We claim that

(1) F (f) =
1

d!

∑
σ∈Sd

f(σ) Tr(σ × diag(t1, t2, . . . , tn))

Here σ × diag(t1, t2, . . . , tn)) is an element of Sd ×GLn, and we are considering its action on V ⊗d

where V = Cn.
It is enough to prove this result for f the character of an Sd-irrep. Let χλ be the character of

Sp(λ). Set

πSp(λ) =
dimSp(λ)

d!

∑
σ∈Sd

χλ(σ)ρSp(λ)(σ),

an element in C[Sd]. From the October 3 lecture, πSp(λ) acts by 1 on Sp(λ) and acts by 0 on Sp(µ)
for µ 6= λ. We have

1

d!

∑
σ∈Sd

χSp(λ)(σ)σ × diag(t1, t2, . . . , tn) =
1

dimSp(λ)
πSp(λ) ⊗ diag(t1, t2, . . . , tn).

By Schur-Weyl duality, the trace of the above operator on V ⊗d is sλ(t1, t2, . . . , tn), since it acts by
0 on Sp(µ)⊗ Vµ(n) for µ 6= λ and acts by 1

dimSp(λ) × diag(t1, . . . , tn) on Sp(λ)⊗ Vλ(n). �

3. The power symmetric functions

We can now see where the power symmetric functions come from. Let us extend F to functions
on Sd which are not class functions, using formula (1). Let σ be an element of Sd with cσ = µ, and
let δσ be the function which is 1 on σ and 0 elsewhere. So

F (δσ) =
1

d!
Tr (σ × diag(t1, . . . , tn)) .

Consider the action of σ × diag(t1, . . . , tn) on the obvious basis ei1 ⊗ ei2 ⊗ · · · ⊗ eid of V ⊗d. Let
(a1, a2, . . . , aj) be one of the orbits of σ. If we are to map ei1 ⊗ ei2 ⊗ · · ·⊗ eid to a multiple of itself,
we must have ia1 = ia2 = · · · = iad .

So the nonzero contributors to F (δσ) are indexed by functions {orbits of σ} → {1, . . . , n}. Given

an orbit Ω of σ, if it is mapped to k, we see that we get a contribution of t
|Ω|
k . So

F (δσ) =
1

d!

∑
φ:orb(σ)→{1,...,n}

∏
Ω∈orb(σ)

t
|Ω|
φ(Ω).

We can factor the sum as ∏
Ω∈orb(σ)

(
t
|Ω|
1 + t

|Ω|
2 + · · ·+ t|Ω|n

)
which is

s∏
k=1

(tµk1 + tµk2 + · · ·+ tµkn ) = pµ(t).

In summary,

F (δσ) =
1

d!
pµ.
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3.1. Orthogonality of the power symmetric functions. Let M(µ) be the size of the conjugacy
class of σ, with µ = c(σ). Let εµ be the function which is 1 on elements with cycle structure µ, and
0 on all other elements. By linearity

F (εµ) =
M(µ)

d!
pµ.

Let ( , ) be the inner product 1
d!

∑
σ∈Sd

f(σ)g(σ) on class functions of Sd. Character functions

of Sd-irreps are orthonormal for ( , ), and F sends characters of irreps to Schurs, so (f, g) =
〈F (f), F (g)〉. In particular, for λ 6= µ, we have

〈pλ, pµ〉 = constant · (ελ, εµ).

But the right hand side is clearly zero, since ελ and εµ have distinct supports in Sd. So we now
have a conceptual explanation for why the power symmetrics are orthogonal.

We can also deduce something interesting by pairing εµ with itself. On the one hand

(εµ, εµ) =
M(µ)2

(d!)2zµ

in the notation of Problem Set 1. On the other hand, it is clear that

(εµ, εµ) =
M(µ)

d!
.

So
d!

M(µ)
=

1

zµ
.

Notice that d!/M(µ) is the size of the centralizer, Z(σ), of σ. So zµ = 1/|Z(σ)|. (Some of you
pointed out that Stanley defines zµ to be the reciprocal of what I wrote; this convinces me his
definition is better.)

4. The Frobenius character formula

Let χλ be the character of Sp(λ). So we have

χλ =
∑
σ

χλ(σ)δσ

as functions on Sd. Applying F to both sides, we deduce

sλ =
∑
σ∈Sd

χλ(σ)
pc(σ)

d!
=
∑
|µ|=d

χλ(µ)
M(µ)

d!
pµ.

In other words, the character table of Sd is, up to some minor conversion factors, the change of
basis matrix from power symmetric’s to Schurs.

In fact, we can make it look nicer by switching the roles of p and s. Using the self-orthogonality
of p’s and s’s, we can compute

χλ(µ) = 〈sλ, pµ〉
pµ =

∑
λ

χλ(µ)sλ

On Problem Set 8, you’ll derive a combinatorial formula for 〈sλ, pµ〉.


