TENSOR INVARIANTS

DAVID E SPEYER

Throughout this note, let dim V' = d, and fix two positive integers m and n. We will be
discussing (V™ @ (VV)&)*XY) Pl use v’s to denote elements of V and u’s for elements of
VY.

1. FIXED VECTORS VERSUS INVARIANT FUNCTIONS

Vem @ (VV)®™ is the same thing as Hom ((VY)®™ @ V®" C). So, instead of looking at
fixed vectors in V¥ @ (VV)®" we could think about SL(V) invariant linear functions on
(VV>®m ® V®n‘

For general analysis, this seems to just add a layer of complication. But for giving exam-
ples, it makes things nicer. Let’s see why.

Remember that X ® Y is spanned by simple tensors; meaning tensors of the form = ® y.
To give an element ¢ of (X ® Y)Y is to give a map which, to any z € X and y € Y, computes
a number ¢(z ® y). Moreover, this computation must be linear in both z and in y.

So an element of Hom ((VV)®™ @ V®" C) means a map ¢ which takes in m elements of
V'V and n elements of V' and, in a multilinear fashion, produces a scalar.

For example, (u,v) — (u,v) is an element of Hom(VY ® V,C). If dimV = 3, then
(v1,v2,v3) > v1Av2Avs is an element of Hom(V®3 C) (where we have chosen an identification
A’V = C.) Note that the first function is GL(V) invariant, and the second is SL(V)
invariant.

For whatever reason, mathematicians don’t have simple names for “the GL(V') invariant
element of V@ V" or for “the SL(V') invariant element of (V)®?* when dim V' = 3.” Even
if you have names for these, you probably don’t have a name for the element of V&3 (V'V)®3
which corresponds to

<U1701> <U17U2> <U1,U3>
(w1, ug, us, v1, v, v3) > det | (ug,v1) (ug,ve) (ug,vs)

(us,v1) (us,v2) (us,v3)

So, when we start talking about particular invariant elements in tensor products, it’s very
natural to switch to talking about multilinear functionals. I hope you can reach the point
that the two languages seem interchangeable.

Note that multiplication corresponds to tensor here. For example, let F/ be the element
of V. ® V" which corresponds to the map (u,v) — (u,v). (If ; and ¢’ are dual bases for V
and VV, then E=),e;®¢".) Then EQ E,in V@ VY@V ®VY, corresponds to the map
(Ul, V1, U2, Ug) — <U1, U1><U2, U2>.

2. CHANGING FROM DUALS TO ADJUGATES

Let W = VY ®det. This is the irreducible GL(V') representation with character sja-1. As

an SL(V') representation, it is isomorphic to V'V, since SL(V') acts trivially on det. We can
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also describe W as A" (V). The reason I bring up W is that, unlike V'V, it is a polynomial
representation, so it fits more easily into our symmetric function techniques.

So (Ve @ (VV)®m)SLY) s isomorphic to (VE™ @ Won)SLY)  Now, VoM @ W is a
polynomial GL(V) representation, on which ¢ - Id acts by ¢™*(@=1"  Since any element of
GL(V) is a product of an element of SL(V'), and an element of the form ¢ - Id, we see that
GL(V) acts on (VO™ @ Wen)SEY) by qet(m+d=1m/d,

So

(Ve @ wen) M) o Homg o (det @D/ yom g yyem),
In particular, it is nonzero only if d divides m + (d — 1)n or, equivalently, if m =n mod d.

m+(d—1)n .

For notational convenience, we set r = =

3. COMPUTATION WITH SYMMETRIC POLYNOMIALS

We see that the dimension of the space (V™ @ W&)SHV) is the same as the multiplicity
of (det)” in V™ @ W®". In other words, this is the coefficient of s,4 in s{"s",_, = ef’e}_;.
You could compute this using Pieri’s rule.

I should say a little about working in A versus working in Az. The ring Ay encodes
the structure of tensor products of polynomial G L, representations. So the multiplicity of
V,(d) in Vi(d) ® V,,(d) is the same as the coefficient when sy(x1, Za, ..., za)su(21, ..., 2q) is
expanded in the Schur basis.

The map A — Ay is a map of rings. Its kernel is Spany (s, )su)>q. S0 it is fine to multiply
sxs, in A and read off the coefficient of s, there. You'll get the same result, since the map
A — Ay sends s, — s, if £(v) < d, and sends s, to 0 if ¢(v) > d.

3.1. So, how does the inner product fit in? In this course, I only defined the inner
product on A, not Ay. Perhaps it would have been clearer to define it on A, as well:
Make the definition be that (s)g)<q is an orthonormal basis for A4. This will ensure that
<Xv, Xw> = dim HOIHGL(V, W)

Then the map A — Ay is norm preserving on the subspace spanned by (3,\)50\)@1. So we
may transfer inner product computations from A to A, if they do not involve partitions
with more than d parts. More specifically, it is enough for one of the two sides of the inner
product to involve no such terms.

It is convenient to note that Span(sy)exy<n = Span(hy)e<n-

Let’s demonstrate a WRONG computation. Suppose we wanted to find dim(V®" ®
(VV)@m)GLWV) - This is the same as dim Homgra)(VE, VE). It would NOT be right to
say that this is (s7, s7), unless we knew that d was large enough that s} contained not par-
titions with more than d parts. (Specifically, we would need d > n. Conveniently for you, in
Problem 3.(a), Problem Set 6, I specified dim V' > n.)

On the other hand, computing this quantity as (s{s]._.,s,q), as we described above, is
fine. The quantity s,« does not contain any partitions with more than d parts.



