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Lie Algebras and Lie Groups

Throughout these notes, G is a smooth Lie group and g is TIdG. For g ∈ g think about 1 + εg
as an element of G near Id of G. Our main focus will be for when G = GLn. In this case gln is
the set of n× n matrices.

If we have a smooth representation ρ : G→ GLN and g ∈ g, then ρ(Id+εg) = Id+εσ(g)+O(ε2)
for some linear map σ : g→ glN .

Proposition: If G is connected, then the map σ determines ρ.

We wll provide a proof for GLn but will point out how to generalize this to any general Lie group.

Proof: Suppose ρ1, ρ2 : GLn → GLN are two representations of GLn such that ρ1(1 + εg) and
ρ2(1 + εg) are both of the form 1 + ε σ(g) +O(ε2) .

Let U be a small convex set containing 0 in g such that Id+ U ⊂ GLn (More generally, choose
a convex subset U containing 0 in g and choose a smooth φ such that φ(0) = e and (Dφ)0 = Id).

For g ∈ U , ρ1((1 + g
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n2 ))n, so
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where we were able to move the limit outside of ρ1 since ρ1 is continuous by assumption.
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This leads us to the definition of the exponential map. For any matrix A ∈ gln, set exp(A) :=
lim
n→∞

(1 + A
n )n.

Expanding the expression in the definition, we find that:
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where we could switch the order of the sum and limit by general analysis arguments. The entries
Ak grow at most exponentially, so this infinite sum will converge for any matrix A.

Expressing the earlier result using the exponential map, we find that for g ∈ U , ρ1(exp(g)) =
exp(σ(g)) and the argument also gives ρ2(exp(g)) = exp(σ(g)).

Shrinking U if necessary, we can arrange it so that exp : U → G is an open map. Let X = {γ ∈
G : ρ1(γ) = ρ2(γ)}. X is closed since ρ1 and ρ2 are continuous. For any x ∈ X, ρ1(x exp(U)) =
ρ1(x)ρ1(exp(U)) = ρ2(x)ρ2(exp(U)) = ρ2(x exp(U)) so x exp(U) ⊂ X. Each point of X has an
open neighborhood contained in X, so X is open.
G is connected and X ⊂ G is both open and closed, so we must have that X = G or X = ∅.

Id ∈ X so X = G and ρ1 = ρ2.

Representations of Lie algebras

A Lie algebra is a vector spce g along with a bilinear map [ , ] : g×g→ g such that [g, h] = −[h, g]
and [[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0 (this is called the Jacobi Identity).

Example: g = gln where [ , ] is the commutater.
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By the proposition, any smooth representation is determined by how σ acts on its Lie algebra.
The next natural question then is what can we say about σ that arise as the linear term of a
representation. Again our work will be for gln though it is true for all g.

Consider the product exp(gε) exp(hε) exp(−gε) exp(−hε)

Expanding each exponential as its defining series, we get that this product equals:
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2
g2ε2 + · · · ) · · · (1− hε+
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where [g, h] = gh− hg is the commutator of g and h.

Using one of the results shown while proving the proposition, we find that

ρ(exp(g ε) exp(h ε) exp(−g ε) exp(−h ε)) = exp(ε σ(g)) exp(ε σ(h)) exp(−ε σ(g)) exp(−ε σ(h))

= 1 + [σ(g), σ(h)]ε2 +O(ε3).

We also have that ρ(exp(g ε) · · · exp(−h ε)) = ρ(1 + [g, h]ε2 + O(ε3)) = 1 + σ([g, h])ε2 + O(ε3). So
σ([g, h]) = [σ(g), σ(h)].

Alternatively, we could have gotten this result without having to use exp by looking at

φ(δg)φ(εh)φ(−δg)φ(−εh) = 1 + ( )δ2 + [g, h]δε+ ( )ε2 +O(δ + ε)3

for an arbitrary φ and then perform the same argument using this expansion.

Our result on σ leads us to the following definition:
Definition: A representation of g is a linear map σ : g→ glN such that σ([g, h]) = [σ(g), σ(h)].


