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CHARLOTTE CHAN

1. Definition and First Examples

Crystals do not describe the representation theory of gln but instead describe the representation
theory of certain quantum groups. Still, the similarities in these structures allow us to describe
certain properties of gln in terms of crystals.

Definition. A gln crystal consists of a set B̃ with a distinguished element 0 together with the

following functions. We write B̃ = {0} t B. We have a map

wt: B → Zn,

and maps

ei, fi : B̃ → B̃, 1 ≤ i ≤ n− 1.

These satisfy the following axioms:

• ei(0) = fi(0) = 0.
• If ei(b) 6= 0 and wt(b) = (a1, a2, . . . , an), then

wt(ei(b)) = (a1, a2, . . . , ai + 1, ai+1 − 1, . . . , an).

• If fi(b) 6= 0 and wt(b) = (a1, a2, . . . , an), then

wt(fi(b)) = (a1, a2, . . . , ai − 1, ai+1 + 1, . . . , an).

• If ei(b) 6= 0 then fi(ei(b)) = b.
• If fi(b) 6= 0 then ei(fi(b)) = b.

Remark. Notice that if B is a finite set, then the axioms guarantee that there is a highest
weight! Indeed, we have the following picture:

0
a fi(b)

b ei(b) c 0

ei · · · ei ei

fi· · ·fifi

Between each node, ei and fi are mutual inverses. Note that this string must be finite, and
hence we must eventually get to elements wherein ei kills the rightmost (call this c) and fi
kills the left-most (call this a). Note that this cannot have a cycle because of the way the
ei and fi operators change the weight. We will call this the (ei, fi) string through b.

• For any (ei, fi) string, wt(a) = si · wt(c), where si ∈ Sn acts on a string of n numbers by
swapping the ith and (i+ 1)th entries. Here, a and c are as in the remark.

Example. Here is a gl2 crystal. We have B = {11, 12, 21, 22} with the data

wt(11) = (2, 0),

wt(12) = (1, 1),

wt(21) = (1, 1),

wt(22) = (0, 2).
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A crystal looks like
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If we made the length 0 string be 21 and the length 2 string be 11 ←→ 12 ←→ 22, that would
also be a crystal (in fact, an isomorphic one).

An example of a non-crystal would be:

22
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e

e

f

f

This is not a crystal because it does not satisfy the last axiom in Definition 1. ♦

Example. An example of a gl3 crystal is the following:
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2 2
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3

1 3
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2 3
3

1 3
3

Here ←− is f1, −→ is e1, ↘ is f2 and ↖ is e2. ♦
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Example. Another example of a gl3 crystal is the following:

However, this is only a virtual character! Explicitly, if we write down the generating function
for the weight function of this crystal, it is x2y+xy2 +x2z+xz2 + y2z+ yz2 +xyz = s21(x, y, z)−
s111(x, y, z). It is a Z-linear combination of Schur polynomials, but the coefficients are not all
positive! In other words, this is not a character of a representation. Later, we will learn to say that
this is not a regular crystal. ♦

Remark. The (ei, fi) and (ej , fj) operators are only related through their interaction with the weight
map wt: B → Zn. This forces that (ei, fi) changes the parity of the lengths of the (ei±1, fi±1)
strings, and conserves the parity of the length of the (ej , fj) strings for |i − j| ≥ 2. (This is a
good exercise to check!) When we see regular crystals, later, we will have direct axioms about how
(ei, fi) and (ej , fj) relate. ♦

Remark. This is a remark about notation in the literature. Oftentimes, people denote the number
of steps to get to the final rightmost string element by εi(b) and the number of steps to get to
the final leftmost string element by φi(b). The weight changes can be expressed in terms of some
complicated linear relation on εi(b) and φi(b), and some people will phrase the axioms of a crystal
in this language instead of in terms of the stepwise weight changes. ♦

2. An Important Example: The Word Crystal for gl2

This is called the word crystal for gl2. It is a building block for all other crystals we will discuss.
Consider B = {1, 2}n. This will be a model for V ⊗n, where V is the two-dimensional standard

representation of gl2. The weight of a word w ∈ B is wt(w) = (# of 1s, # of 2s).
For n = 3, we have the following elements of B:

222 221 211 111

212 121

122 121

This part rewritten by David. In order to build a crystal, we have to define e and f operators
which organize these 8 words into three strings, one of length 3 and two of length 1. I can’t fully
motivate the definition, but here are some clues that might help us make peace with it.

• The weight axiom requires that e must decrease the number of 2’s by one and increase the
number of 1’s by one. This could happen by, for example, making three 2’s into 1’s and
making two 1’s into 2’s. However, it seems more natural to always make a single 2 into a 1
and this is what we will do. (Similarly, f will make a 1 into a 2.)
• We want strings of length 0 in {1, 2}2n to correspond to trivial subreps of V ⊗2n. The

dimension of the trivial subspace in V ⊗2n is the Catalan number (2n)!
(n+1)!n! . Among the

things the Catalan number counts is ballot sequences: Strings of n 1’s and n 2’s so that
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every initial subword has (weakly) more 1’s than 2’s. For example, here are the ballot
sequences of length 5:

111222, 121122, 112212, 112122, 121212.

We will arrange for these to be the length zero strings of our crystal.
• The number of length ` strings in V ⊗n will be 0 if ` 6≡ n mod 2. If n ≡ ` mod 2, then

the number will be
(

n
n/2−`/2

)
−
(

n
n/2−`/2−1

)
. There is a standard reflection argument1 for

counting ballot sequences. That argument shows that this difference of binomial coefficients
is the number of words with (n+ `)/2 copies of 1 and (n− `)/2 copies of 2, such that every
initial subword has more 1’s than 2’s. Those words will be the high weight elements.

We now give the actual rule, by showing how it operates on the sting 2212122112122111112:

Example.
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The above picture represents the word 2212122112122111112. The shading is formed by “shining”
light from the east and the west onto the above mountain range. Then the “lit” parts of the word
are the underlined digits in 2212122112122111112. ♦

Notice that lit numbers always look like a string of 2s followed by a string of 1s. The operator
e (resp. f) changes the center lit 2 (resp. 1) to 1 (resp. 2). By the “center lit 2”, we mean the
boundary between where the 2s turn into 1s. These central numbers are marked in red above. The
operator maps to 0 if there is no lit 2 (resp. 1) to change.

Claim. This doesn’t change the lit and unlit sets.

This paragraph added by David. Once this claim is checked, it is clear that e and f are
inverse as appropriate. Furthermore, the number of shadowed 1’s and shadowed 2’s is equal (call
it s) and, by the above claim, s is preserved by the crystal operators. At the end of the gl2 strings,
the lit numbers are entirely 1t and entirely 2t. So the two ends of the string have weights (s+ t, s)
and (s, s+ t), establishing the final crystal axiom.

1See, for example, Marc Renault, Lost (and Found) in Translation: André’s Actual Method and its Application to
the Generalized Ballot Problem, Amer. Math. Monthly, April 2008.
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This paragraph added by David. A helpful picture is

b

εi(b)
φi(b)

φi(b) εi(b)

In other words, the distances from b to the ends of its string are given by the heights from the left
and right ends of the mountain range to its highest peak(s). Notice that, in a ballot word, the
mountain range is entirely a subterranean crater with its endpoints at the same height, so nothing
is lit and we get a string of length 0.

This is the gl2 word crystal. The gln word crystal has B = {1, . . . , n}d and (ei, fi) act (as
above) on the (i, i+ 1) substring leaving all other letters alone.

Next time, we will discuss how to put crystal structure on tableaux.


