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Last time we defined crystal structure on the words containing two numbers, i.e. {1, 2}d.
In general , we can define the crystal structures on {1, 2, . . . , n}d, where ei, fi act on i, i+ 1,
and ignore everything else. The following are some examples.

Example 1. The pictures below are the crystal structure on words {1, 2, 3, 4} when d = 1, 2

1
2
3

1 2 3 4d=1

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

d=2

As for d = 3. There are four connected components. They are

• {ijk|i ≥ j ≥ k} ↔ Sym3V
• {ijk|i < j < k} ↔ ∧3V
• {ijk|i ≥ j < k} ↔ V(21)
• {ijk|i < j ≥ k} ↔ V(21)

Note: it is not always the case that number of connected components of crystal structure
on {1, 2, . . . , n}d is 2d. For example, in the case n = 4, d = 4, the number of connected
components is 10 instead of 8.

Let λ be a partition (or ν/µ a skew shape) with |λ| = d (or |ν/µ| = d). Embed the set of
semistandard Young tableaux into the set of words {1, 2, . . . , n}|λ| by reading right to left,
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and then top to bottom:

1 1

1 2 2

1 2 3 4

7→ 112214321

Theorem 2. This set of words plus empty word is closed under crystal operators. If λ is a
straight shape, then it is a connected component of the word crystal.

Proof. Fix i, and consider the action of (ei, fi). It suffices to look at the parts contains i and
i+ 1 (everything else won’t change the inequality). It has to be in the following form.

i i

i i i i+ 1

i i+ 1 i+ 1 i+ 1

i i

Every vertical stack gives the reading words iii(i+1)(i+1)(i+1), which will not be changed
by the action of ei, fi. So after applying fi, the i which is changed to i + 1, must be at the
right hand end for one of the (i, i+ 1) row, and the box below which is not i+ 1. Similarly,
after applying ei, the i+ 1 which is changed to i, must be at the left hand end for one of the
(i, i+ 1) row, and the box above which is not i. This preserves the semistandardness of the
tableau.

(Note: Any convention of reading orders work in the proof as long as we read left to right
and top to bottom. For example, if we read down columns, going right to left, then a vertical
stack would give i(i+ 1)i(i+ 1)i(i+ 1) rather than iii(i+ 1)(i+ 1)(i+ 1), but either way it
would be shadowed and thus unchanged by the (ei, fi).)

Let λ be a straight shape partition. Let Crys(λ) be the crystal we just built on SSY T (λ, n).
We will show that the SSYT whose ith row is filled with i’s is the unique high weight element.

An element b is high weight in a crystal if ei(b) = 0 ∀i. We will show by induction on
i that the ith row of a high weight element in SSY T (λ, n) must be element i. If i = 1,
and not all boxes are filled with 1’s, then the right most box is not 1. Say it’s k. Call the
corresponding word b. Look at the ek string starting at k. The first letter k must be lit, so
ek−1(b) 6= 0, a contradiction.

1 1 1 1 · · · k
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Inductively, suppose we have all k’s in the kth row for 1 ≤ k ≤ i− 1. Since the top i− 1
rows won’t affect the action of ek for k ≥ i, we can safely remove them, and the rest of the
arguement will be exactly the same as the base case.

1 1 1 1 1 1 1 1

2 2 2 2 2

...
...

...
...

i− 1 i− 1 i− 1 i− 1

i i i r

This shows that if λ is a straight shape, there is a unique high weight element in the
crystal Crys(λ), which finishes the claim

The following is what’s coming up next:

Theorem 3. Every connected component of the word crystal is isomorphic to Crys(λ) for
some λ, and the number of occurance of Crys(λ) in {1, 2, . . . , n}|λ| is the number of SYT of
shape λ.

Corollary 4. Every connected component of Crys(ν/µ) is isomorphic to Crys(λ) for some
λ, and number of copies of Crys(λ) in Crys(ν/µ) is the Littlewood-Richardson coefficient
cνλµ

On the other hand, if we would like to view LR coefficient as the coefficient of sν in the
product sλsµ, we can define λ ∗ µ to be

λ

µ

The number of occurance of Crys(ν) in Crys(λ ∗ µ) is cνλµ. We can prove these in terms
of high weight vectors.
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