
GLn REPRESENTATION THEORY NOTES FOR 11-05

SCRIBE: JAKE LEVINSON

Today we begin translating some of our results on GLn representations into results about Sn
representations. We’ll also eventually (on Wednesday) set up Schur-Weyl Duality, which allows us
to go back and forth between GLn and Sd for any n, d.

Our first tool is the following.
Definition Let |λ| = n. The Specht module Sp(λ) is the (1, . . . , 1) weight-space of Vλ(n).

Note that a basis for the Specht module is given by the SSYTs of shape λ and entries 1, . . . , n, each
occurring once. These are called the standard Young tableaux . In particular,

dim Sp(λ) = #{standard Young tableaux of shape λ}.

Warning: The tableau

1 2
2 3 is not standard, even though the rows and columns are strictly

increasing. Standard means each entry {1, 2, . . . , n} is used once.

1. Main Theorem

Our main theorem is the following:

Theorem. As λ varies over the partitions of n, Sp(λ) varies over the irreducible representations
of Sn, each occurring once.

Proof. First of all, Sn ⊂ GLn as permutation matrices acting on Vλ(n). If σ ∈ Sn is a permutation,
then it maps the (a1, . . . , an) weight-space to the (aσ(1), . . . , aσ(n)) weight-space.

This is a simple computation. Take a diagonal matrix d = diag(t1, . . . , tn) and consider its action
on σu, where u is in the (a1, . . . , an) weight space. We have

dσu = σ
(
σ−1dσ

)
u = σ diag(tσ−1(1), . . . , tσ−1(n))u = σ

(
ta1
σ−1(1)

ta2
σ−1(2)

· · · tan
σ−1(n)

· u
)

=
(
ta1
σ−1(1)

ta2
σ−1(2)

· · · tan
σ−1(n)

)
· σu =

(
t
aσ(1)
1 t

aσ(2)
2 · · · taσ(n)n

)
· σu

So σu is in the weight space we claimed it was in.
In particular, we see that Sn acts on the (1, . . . , 1) weight space.
Now, we look inside the matrix coefficients ring C[zij ]1≤i,j≤n for GLn. Consider the terms which

are degree 1 in every row and every column. These are weight (−1, . . . ,−1) for the left GLn action
and weight (1, . . . , 1) for the right GLn action.)

An obvious basis for this space is given by

{z1σ(1) · · · znσ(n) : σ ∈ Sn},

and we see that, as an Sn × Sn representation, this subspace is isomorphic to C[Sn]. Now we
know that, as a GLn×GLn representation, C[zij ] has the decomposition from the weak Peter-Weyl
theorem,

C[zij ] =
⊕
λ

Vλ(n)∨ ⊗ Vλ(n).

By inspection, the only summands that contribute to the weight space we care about are those
with |λ| = n. So, by restricting to the Specht modules contained in each Vλ(n), we obtain⊕

|λ|=n

Sp(λ)∨ ⊗ Sp(λ) ∼= C[Sn].

By a problem on an old problem set, (assuming each Sp(λ)∨⊗Sp(λ) is nonzero), this is automatically
the decomposition of C[Sn] into irreducible Sn×Sn representations, and the Sp(λ) are automatically
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the irreducible Sn representations, each listed once. To finish the proof, note that Sp(λ) is always
nonzero since there’s certainly always at least one SYT of shape λ. �

Note: All Sn representations are self-dual, since χV ∨(σ) = χV (σ−1), and σ is conjugate to σ−1

in Sn. So, Sp(λ)∨ ∼= Sp(λ).

A fancier way of stating the above results is the following:

Corollary. Restriction to the (1, . . . , 1) weight-space gives an equivalence of categories{
GLn polynomial irreps where t · Id acts by tn

}
−→

{
Sn representations

}
.

2. Examples

Here are four basic examples of Specht modules.

Example 1. We consider Sp
(

· · ·
)

with n boxes in one row. This is the subspace of
V · · · (n) of degree (1, . . . , 1):

V · · · (n) ∼= SymnCn = C[z1, . . . , zn]n,

so Sp
(

· · ·
)

= C · z1 · · · zn, and Sn acts trivially. So, this is the trivial representation.

Example 2. We consider λ =

·
·
·

with n boxes in one column. Then Sp(λ) is the subspace of
Vλ(n) of degree (1, . . . , 1):

Vλ(n) ∼=
n∧
Cn = det(·),

so the Specht module is one-dimensional, Sp(λ) = C ·∆1...n, and Sn acts by permuting the columns
in the determinant, which introduces a sign of (−1)σ. So, this is the sign representation of Sn.

Example 1. We consider Sp
( · · · )

. This is the C-span of the products

∆ij ·
z11 · · · z1n
z1iz1j

= det

∣∣∣∣z1j z1j
z2i z2j

∣∣∣∣ · z11 · · · ẑ1i · · · ẑ1j · · · z1n.
The dimension is the number of SYTs of shape λ, which is n−1 (corresponding to the choices of the
box on the second row), so there are various relations between the above generators. In particular,
letting p = z11 · · · z1n and wk = w2k

w1k
, we see that our generators above are given by p(wj − wi),

which leads to lots of relations. A nice way of putting it is:

Sp(

· · ·
) ∼= {a1w1 + · · · anwn :

∑
ai = 0} ⊂ Cn,

which identifies it as the “standard representation” (the subrep of the “permutation representation”
Cn that is orthogonal to the trivial subrep).

Example 4. Take the transpose of our last partition. Similarly to the above, we have

Sp(

·
·
·

) = Span(z1k ·∆1···k̂···n)nk=1.

This gives n generators, but there are only n− 1 standard Young tableaux of this shape, so there
is one relation. The relation is just the alternating sum:∑

(−1)kz1k ·∆1···k̂···n = 0.
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In particular, we can write

Sp(

·
·
·

) ∼= Cn/(e1 + · · ·+ en),

where the Sn action is given by (the obvious action) ⊗ (the sign action).

These example provide evidence for the following equality (which is true):

Sp(λT ) = Sp(λ)⊗ (sign).

Challenge. Compute the Specht module for

· · ·
·
·
·

with k + 1 boxes vertically and n − k horizontally. (This is somehow “in between” the examples
above.)

3. Next Time

On Wednesday, we’ll show the following: with n = dimV ,

V ⊗d =
⊕
|λ|=d

Sp(λ)⊗ Vλ(n)

as Sd ×GLn representations.


