SCHUR WEYL DUALITY

In this lecture, we draw connection between irreducible representations of S_d and irreducible representations of GL_n . Let $Sp(\lambda)$ be the Specht module, which is (1, 1, ..., 1) weight space of of V_{λ} , where $|\lambda| = d$.

Theorem 1 (Schur Weyl Duality). Let dim V = n. Then $V^{\otimes d} \cong \bigoplus_{|\lambda|=d} Sp(\lambda) \otimes V_{\lambda}(n)$ as an $S_d \times GL_n$ representation.

Proof. Inside $\mathbb{C}[z_{ij}]_{\substack{1 \leq i \leq d \\ 1 \leq j \leq n}}$ look at terms of degree 1 in each row. Since S_d switches rows, and GL_n acts on rows, one knows that this space is isomorphic to $V^{\otimes d}$. On the other hand, $\mathbb{C}[z_{ij}] \cong \bigoplus_{\lambda} V_{\lambda}(d)^{\vee} \otimes V_{\lambda}(n)$. Terms of degree 1 in each row of (z_{ij}) corresponds to pick $(1,1,\ldots,1)$ weight space from $V_{\lambda}(d)^{\vee}$, which is $Sp(\lambda)^{\vee}$, where $|\lambda|=n$. Therefore, comparing two sides and notice representation of symmetric groups are self-dual, we get

$$V^{\otimes d} \cong \bigoplus_{|\lambda|=d} Sp(\lambda)^{\vee} \otimes V_{\lambda}(n) \cong \bigoplus_{|\lambda|=d} Sp(\lambda) \otimes V_{\lambda}(n)$$

Now we see Young Symmetrizer from the Schur Weyl Duality point of view. Let $|\lambda| = d$, $a_{\lambda} = \frac{1}{|S_{\lambda}|} \sum_{\sigma \in S_{\lambda}} \sigma$, and $b_{\lambda} = \frac{1}{|S_{\lambda}|} (-1)^{\sigma} \sigma$. According to the problem set, we know $a_{\lambda} V^{\otimes d} = \bigotimes_{k} Sym^{\lambda_{k}} V$. As we have computed before, this is $V_{\lambda} \oplus (\bigoplus_{\mu \prec \lambda} V_{\mu}^{\otimes n_{\mu}})$. Similarly $b_{\lambda^{T}} V^{\otimes d} = \bigotimes_{k} \wedge^{\lambda_{k}^{T}} V = V_{\lambda} \oplus (\bigoplus_{\mu \succ \lambda}) V_{\mu}^{n_{\mu}}$. Hence, a_{λ} acts on $Sp(\lambda)$ by rank 1 map, and acts by 0 map on $Sp(\mu)$ for $\mu \succ \lambda$ and $b_{\lambda^{T}}$ acts on $Sp(\lambda)$ by a rank 1 map and acts by 0 map on $Sp(\mu)$ for $\mu \prec \lambda$.

In particular, $a_{\lambda}b_{\lambda^{T}}\mathbb{C}[S_{d}] \cong Sp(\lambda)$ as an S_{d} representation. (Here $a_{\lambda}b_{\lambda^{T}}\mathbb{C}[S_{d}]$ is an S_{d} representation by the right S_{d} -action.)

In particular, we can now prove what we observed last time:

Proposition 2. $Sp(\lambda^T) \cong Sp(\lambda) \otimes Sgn$, where Sgn is the sign representation.

Proof. Define the map $\epsilon: \mathbb{C}[S_d] \longrightarrow \mathbb{C}[S_d]$ by $\epsilon(\sigma) = (-1)^{\sigma} \sigma$ for $\sigma \in S_d$, extended by linearity. Note that this is a map of rings. Clearly, $\epsilon(a_{\lambda}) = b_{\lambda}, \epsilon(b_{\lambda}) = a_{\lambda}$. So $\epsilon(a_{\lambda}b_{\lambda^T}\mathbb{C}[S_d]) = b_{\lambda}a_{\lambda^T}\mathbb{C}[S_d]$. On the other hand, $\mathbb{C}[S_d] \cong \bigoplus_{|\lambda|=d} Sp(\lambda) \otimes Sp(\lambda)$. By the observation above, $a_{\lambda}b_{\lambda^T}\mathbb{C}[S_d] \cong b_{\lambda^T}a_{\lambda}\mathbb{C}[S_d] \cong Sp(\lambda)$. Hence $\epsilon(Sp(\lambda)) = \epsilon(a_{\lambda}b_{\lambda^T}\mathbb{C}(S_d)) = b_{\lambda}a_{\lambda^T}\mathbb{C}[S_d] = Sp(\lambda^T)$. Also notice the map ϵ maps $Sp(\lambda)$ to $Sp(\lambda) \otimes Sgn$. Therefore, $Sp(\lambda^T) \cong Sp(\lambda) \otimes Sgn$. \square

Schur-Weyl duality can often be used to make constructions "natural", in a not very useful way. For example, we have seen the map $\omega : \Lambda \to \Lambda$, which takes s_{λ} to s_{λ^T} . Is there a "natural" map on GL_n -representations which realizes it? Why, yes!

One useful but not insightful application: Fix $d \leq n$, V is standard representation.

Let \mathcal{C} be the category of polynomial GL_n representations, where $t\mathrm{Id}$ acts by t^d . Then we define a functor $\mathcal{C} \to \mathcal{C}$ by:

$$W \longrightarrow Hom_{S_d}(Hom_{GL_n}(W, V^{\otimes d}) \otimes Sgn, V^{\otimes d}).$$

Thus functor takes representations with character f to representations with character $\omega(f)$. In general, Schur-Weyl duality is an equivalence of categories between

{polynomial representations of GL_n on which $t \cdot Id$ acts by t^d }

and

$$\{S_d \text{ representations}\}$$

The maps are $W \mapsto \operatorname{Hom}_{GL(V)}(V^{\otimes d}, W)$ and $W \mapsto \operatorname{Hom}_{S_d}(V^{\otimes d}, W)$.

So, if you have a construction which you can categorify on the S_d side, this will let you categorify it on the GL_n side.