
APPLICATIONS OF SCHUR-WEYL DUALITY:

CHRIS FRASER

Last time we proved Schur-Weyl Duality :

V ⊗d ∼=
⊕
|λ|=d

Sp(λ)⊗ Vλ(n)

as a Sd ×GL(V )-representation, where (n = dimV ).
Let’s see this theorem in action.

1. Application 1: The First Fundamental Theorem of Invariant Theory

We’ll finally prove that the natural map C[Sd] → EndGL(V )(V
⊗d) is always sujrective. From

Problem Set 6, we know it’s an isomorphism in the case n ≥ d.

Proof. From the decomposition given by Schur-Weyl duality, thinking one isotypic component at a
time,

EndGL(V )(V
⊗d) =

⊕
Vλ(n)6=0,|λ|=d

End(Sp(λ)).

What we are doing here is noting that all of the nonzero Vλ(n) have 1-dimensional GL(V )-
endomorphism rings, and that GL(V ) acts trivially on the Sp(λ) factors (so these stick along
for the ride).

Note it is possible that Vλ(n) = 0, but Sp(λ) 6= 0; these don’t show up on the RHS.
At this point, we are done by Mashcke’s Theorem (which we mentioned in the October 5,

Consequences of Peter-Weyl lecture): the group algebra spans⊕
End(Vi)

as the Vi vary over the G-irreps, each taken exactly once.
Hence in our case, C[Sd] →

⊕
End(Sp(λ)) is surjective (not every λ has to show up here, but

each one that does shows up at most once, so we are good by Maschke).
�

By the tensor-hom adjunction, we know that

EndGL(V )(V
⊗d) := HomGL(V )(V

⊗d, V ⊗d)

= HomGL(V )(V
⊗d,Hom((V ∨)⊗d,C))

= HomGL(V )((V
∨)⊗d ⊗ V ⊗d,C).

This last way of writing End(V ⊗d) is often useful. Let’s see how C[Sd] shows up concretely in
this case. Given a simple tensor u1⊗· · ·ud⊗v1⊗· · · vd with the ui ∈ V ∨, vi ∈ V , and given σ ∈ Sd,
σ gets sent to the GL(V )-equivariant map

u1 ⊗ · · ·ud ⊗ v1 ⊗ · · · ⊗ vd 7→ 〈u1, vσ(1)〉〈u2, vσ(2)〉 · · · 〈ud, vσ(d)〉.

The surjectivity we have just proven says that these types of functions generate HomGL(V )((V
∨)⊗d

⊗
V ⊗d,C).

We know from previous lectures that Vλ(n) is nonzero if and only if `(λ) ≤ n.
So we can rewrite our Application 1 above as

EndGL(V )(V
⊗d) ∼=

⊕
|λ|=d,`(λ)≤n

End(Sp(λ)).
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Let’s look at the case n = 2. In this case, the dimension of the left hand side of the above is
the dth Catalan number, which is the number of SYT on (d, d). The right hand side has dimension
given by ∑

|λ|=d,`(λ)≤2

(# of SYT on λ)2.

It is a nice exercise to verify why these two numbers are the same. The hint David provided in

class was to split the diagram for

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ into

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ and

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ . The

algebra EndGL(V )(V
⊗d) when n = 2 is called the Temperley-Lieb Algebra , and is a hot topic,

because it is an excellent toy example of a planar algebra .

2. Application 2: Littlewood-Richardson Coefficients

We define cνλµ by the equality

sλ(z)sµ(z) =
∑
ν

cνλµsν(z).

We also can define

sν(x, y) =
∑
λ,µ

dλµν sλ(x)sµ(y).

The theorem is that cνλµ = dλµν .

Proof. We will see the theorem by noting that both of these numbers are the coefficient of sµ inside
sν/λ, i.e. 〈sν/λ(y), sµ(y)〉.

The schur function sν(x, y) is defined to be

sν(x, y) =
∑

T∈ SSYT(ν)

xT yT .

This is symmetric in the x and y variables, so we can focus on tableaux in which all of the “y”
content happens outside the “x” content (this is like thinking the y variables are “bigger” than the
x variables). Thinking this way shows the equality

sν(x, y) =
∑

λ⊂ν, T∈SSY T (λ), U∈SSY T (ν/λ)

xT yU

=
∑
λ

sλ(x)sν/λ(y).

Now, once we expand sν/λ(y) =
∑

µ eν,µ,λsµ(y) and plug in to the above, we get the equality

sν(x, y) =
∑
λ,µ

eν,µ,λsλ(x)sµ(y),

from which we deduce that

eν,µ,λ =< sν/λ(y), sµ(y) >= dλ,µν .

Now the adjointness property of “skewing by λ” from the September 26 lecture, states that for
any f ∈ Λ

< sν/λ,f >=< sν , fsλ > .

Applying this to f = sµ, we see

< sν/λ, sµ >=< sν , sµsλ >= cνλ,µ.

This shows

cνλ,µ = dλ,µν =< sν/λ, sµ >

as claimed. �
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Now let’s define Cνλ,µ = HomGL(V )(Vν , Vλ⊗Vµ) for dimV ≥ `(ν); this is a space whose dimension
is cνλ,µ.

Similarly let’s set

Dλ,µ
ν = HomGLk×GLn−k(Vλ(k)⊗ Vµ(n− k), Vν(n)).

We need k ≥ `(λ), (n− k) ≥ `(µ) here. This space has dimension dλ,µν .

Note! The spaces Cνλ,µ, D
λ,µ
ν are “just” vector spaces; taking Hom of two GL-reps contracts the

GL action to a trivial one. David talked some more about these spaces on the November 12 lecture.

Let ` = |λ|,m = |µ|; we relate both of Dλ,µ
ν and Cνλ,µ to the space

Eλ,µν = HomS`×Sm(Sp(λ)⊗ Sp(µ), Sp(ν)).

This should work in general, but for our construction, we will focus on the case that k = `,

n − k = m. (See the appendix for more on this.) First, we’ll relate Dλ,µ
ν and Eλ,µν . Look at the

(1, . . . , 1) weight space in Vν(n). As an Sn-rep, it is Sp(ν). Therefore, as an Sl × Sm-rep, it is
Sp(ν)|S`×Sm . Notice that S` × Sm ⊂ GL` ×GLm, so we can also restrict down to S` × Sm by first
restricting from GLn to GL` ×GLm, and then restrict to S` × Sm.

From our character computations, restricting to GL` ×GLm = GLk ×GLn−k first, we get

Vν(n)|GLk×GLn−k
∼=

⊕
λ,µ

Dλ,µ
ν ⊗ Vλ(k)⊗ Vµ(n− k).

Now passing to (1, . . . , 1)-weight spaces,

Sp(ν)|Sk×Sn−k ∼=
⊕

Dλµ
ν ⊗ Sp(λ)⊗ Sp(µ),

from which we conclude
Eλµν = Dλµ

ν .

Now we want to involve Cνλ,µ in the picture. Look at V ⊗(`+m) =
⊕
|ν|=`+m Sp(ν) ⊗ Vν as a

S`+m ×GL(V )-rep. Restricting to the product of smaller symmetric groups gives

(1) V ⊗(`+m) =
⊕

|ν|=`+m,|λ|=`,|µ|=m

Eλµν ⊗ Sp(λ)⊗ Sp(µ)⊗ Vν

as an (S` × Sm ×GL(V ))-representation.
Also, Schur-Weyl applied to V ⊗` ⊗ V ⊗m gives

V ⊗` ⊗ V ⊗m =
⊕
|λ|=`

Sp(λ)⊗ Vλ
⊗ ⊕

|µ|=m

Sp(µ)⊗ Vµ

as S` ×GL(V )× Sm ×GL(V ) reps, and rearranging tensor factors gives

V ⊗` ⊗ V ⊗m =
⊕

|λ|=`,|µ|=m

Sp(λ)⊗ Sp(µ)
⊗ ⊕

|λ|=`,|µ|=m

Vλ ⊗ Vµ

=
⊕

|λ|=`,|µ|=m

Sp(λ)⊗ Sp(µ)
⊗ ⊕

|ν|=`+m

Cνλ,µ ⊗ Vν ,

where the last step is justified by the definition of cνλ,µ as structure constants for multiplication.

Comparing (1) and the RHS of the preceding, we read off that Cνµλ = Eλµν .

3. Some Context: Bialgebras

We would like to provide some context for these results: You should think of dλµν as structure
constants for comultiplication

∆: Λ→ Λ⊗ Λ

via f(x) 7→ f(x, y), sending a symmetric function f to a function that is symmetric in “two” infinite
sets of variables, x, y.

Similarly, we let m : Λ⊗Λ→ Λ by f ⊗ g 7→ fg be the multiplication map; cνλµ are the structure
constants for this multiplication map.
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Our multiplication and comultiplication satisfy the axioms for what is called a bialgebra struc-
ture . The axioms for a bialgebra are as follows:

• The map m makes Λ into an algebra. We definitely know m is distributive (since we have
defined it as a map from the tensor product). What we need to check is that it is associative;
we choose to express this by the following diagram:

Λ Λ

Λ

Λ

=

Λ Λ

Λ

Λ

,

where when two lines meet, you multiply.
An algebra also needs a unit map, id : Z→ Λ which gives isomorphisms

Z⊗ Λ
id⊗idΛ−−−−→ Λ

idΛ⊗id←−−−− Λ⊗ Z,

where both of the arrows above are isomorphisms. We could write this as a diagram if we
liked.
• The bulleted point above describes the axioms for an algebra. A Co-algebra comes with

a counit ε : Λ → Z and a comultiplication ∆: Λ → Λ ⊗ Λ. These maps lead to a coalgera
structure if they satisfy the same diagrams as we drew for an algebra, with the arrows
reversed.
• In terms of these properties, a bialgebra is both an algebra and a coalgebra, and these

structures are compatible. Compatibility means that ∆ is a map of algebras, which is
expressed in the diagram

Λ

Λ⊗ Λ

Λ

Λ⊗ Λ

ΛΛ

=

Λ Λ

Λ⊗ Λ

Λ Λ .

• A final object you may have heard of is a Hopf algebra . A Hopf algebra is a bialgebra, but
has additional structure that axiomatizes the involution ω on symmetric functions. A graded
bi-algebra, such as Λ, is automatically a Hopf algebra. See Sweedler’s book Hopf Algebras
(1969) or http://sbseminar.wordpress.com/2011/07/07/why-graded-bi-algebras-have-antipodes/.

The reason we bring all of this up, is the following beautiful result of Zelevinsky:

Suppose R is a graded Hopf-algebra, with R0 = Z, which is a free Z-module with
a Z-basis, {si : i ∈ I}, and suppose that the structure constants of m and ∆ with
respect to this basis are the same as each other and are nonnegative. Then R ∼= Λ⊗m

for some choice of m, and your basis is sλ1 ⊗ sλ2 ⊗ · · · ⊗ sλm .

This is the main result of Chapter 1 of Representations of Finite Classical Groups: A Hopf
Algebra Approach, A. Zelevinsky (1981).

Some would say this is a philosophical explanation for why Λ shows up in so many seemingly
unrelated places in math. For example, you may have heard that the cohomology ring of the
Grassmannian is intimately related to Λ. One “explanation” for this is that the Grassmannian has
natural geometric operations which give multiplication, co-multiplication, et cetera. For example,
multiplication corresponds to intersection. From the perspective of Zelevinsky’s result, once we
know this, we know the cohomology ring of the Grassmannian “has” to be related to the ring of
symmetric functions.
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Appendix: Removing the dependence of D on (k, n− k): A start

Let |λ| = `, |µ| = m and |ν| = `+m. We defined

Dλµ
ν = HomGLk×GLn−k(Vλ(k)⊗ Vµ(n− k), Vν(n)|GLk×GLn−k).

for k ≥ ` and n− k ≥ m.
This definition apparently depends on k and n, so write it as Dλµν(k, n−k). In this appendix, we

will construct natural maps Dλµ
ν (k, n−k+1) ∼= Dλµ

ν (k, n−k) and Dλµ
ν (k+1, n−k)→ Dλµ

ν (k, n−k).
Our definition of Cνλµ also had an apparent dependence on an auxiliary n, but we constructed

an isomorphism Cνλµ(n) ∼= Eλµν for every n ≥ `+m, so composing two such isomorphisms identifies

Cνλµ(n) and Cνλµ(n′) for different n and n′. When we identified D with E, we only did it for k = `
and n− k = m, so we can’t use that approach to identify the different D’s with each other.

Lemma: Let n ≥ |κ|. Let Vν(n+ 1)0 be the part of Vν(n+ 1) where diag(1, 1, . . . , 1, t) acts by
weight t0. Then Vν(n+ 1)0 ∼= Vν(n) as a GLn representation.

Proof: This is the Schur function identity

sν(x1, x2, . . . , xn, t) = sν(x1, x2, . . . , xn) + (terms divisible by t). �

Let k ≥ ` and n− k ≥ m. Let φ lie in Dλµ
ν (k, n− k + 1) = HomGLk×GLn−k(Vλ(k)⊗ Vµ(n− k +

1), Vν(n+1)|GLk×GLn−k+1
). Restrict φ to Vλ(k)⊗Vµ(n−k+1)0 inside Vλ(k)⊗Vµ(n−k+1). We claim

that the restriction of φ lands in Vν(n+1)0. Proof: Since φ is a map of GLn+1 modules, it preserves
weight spaces. In particular, φ preserves the property of diag(1, 1, . . . , 1)×diag(1, 1, . . . , 1, t) acting
by weight t0. So φ(Vλ(k)⊗ Vµ(n− k + 1)0) ⊆ Vν(n+ 1)0.

So the restriction of φ gives a map

Vλ(k)⊗ Vµ(n− k) ∼= Vλ(k)⊗ Vµ(n− k + 1)0 → Vν(n+ 1)0 ∼= Vν(n).

In other words, the restriction of φ lies in Dλµ
ν (k, n− k).

We have built a map Dλµ
ν (k, n − k + 1) → Dλµ

ν (k, n − k), sending φ to its restriction. We can

similarly build a map Dλµ
ν (k + 1, n− k)→ Dλµ

ν (k, n− k).
Proving that this maps are isomorphisms will wait for another day – possibly November 19.


