
LECTURE 12: REPRESENTATION OF COMPACT GROUP AND ITS
CHARACTERS

SCRIBE: YI SU

In this lecture, G is a compact group, and all representations are continuous unless specified
otherwise. In the previous lecture, we showed that every representation is a direct sum of
simple representations.

Lemma 1 (Schur’s Lemma). If V is a simple representation of group G over C, then
EndG(V ) = C · Id.
Proof. Let A : V → V commute with G action. Over C, the matrix A has eigenvalue λ, so
ker(A− λ · Id) 6= 0. On the other hand ker(A− λ · Id) is a subrepresentation of V , so it is
V . Thus, A = λ · Id �

The proof of lemma also gives an algorithm for decomposing a representation into subrep-
resentations. If the representation is given in some explicit way, then computing EndG(V )
is a matter of linear algebra. Generate a random element of EndG(V ); its eigenspaces are
subreps of V .

Proposition 2. If V andW are simple G-representations, and V 6∼= W , then HomG(V,W ) =
0.

Proof. We prove the contrapositive statement: if there is a nonzero G-commuting homomor-
phism from V to W , then V ∼= W .

Let A : V → W be such nonzero homomorphism. The subrepresentation ker(A) of V does
not equal to V, so ker(A) = 0. Similarly the subrepresentation Im(A) of W does not equal
to 0, so Im(A) = W . Therefore, A is both injective and surjective, thus a bijection. �

Following the above results, let Ui be a list pairwise nonisomorphic simple representations,
and V ∼= ⊕U⊕ai

i , W ∼= ⊕U⊕bi
i . Then HomG(V,W ) = ⊕iMatai×biC. Also, if U is a simple

representation, and V is any representation, then V ∼= W1 ⊕W2, where W1
∼= U⊗a and W2

has no subrepresentation isomorphic to U . In another word, U isotypic component of V is
the image of Hom(U, V )⊗ U → V .

Corollary 3. If ⊕iU⊕ai
i
∼= ⊕iU⊕bi

i , then ai = bi.

Proof. Isomorphism means that we have inverse maps g, h between the spaces. Say g =
(g1, . . . , gn), where gi ∈ Matai×biC, and h = (h1, . . . , hn), where hi ∈ Matbi×aiC. The
matrices gi and hi are inverse of each other, so they have to be square matrices, which shows
ai = bi.�

Now let V be a continuous finite dimensional representation. One knows that V G ⊂ V as
a subrepresentation, so V = V G ⊕W , W is some G-representation. We would like to find
out W explicitly. Define π : V → V by π(v) =

∫
G
ρ(g)vdg, or π =

∫
G
ρ(g)dg. π has following

properties:
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(1) ∀v ∈ V , π(v) ∈ V G

Proof. ρ(h)π(v) =
∫
G
ρ(h)ρ(g)vdg =

∫
G
ρ(gh)vdg =

∫
G
ρ(g)vdg = π(v). The third

equality is due do the left invariant property of the Harr measure.

(2) If v ∈ V G, then π(v) = v.

Proof.
∫
G
ρ(g)vdg =

∫
G
vdg = v. The last equality is due to the normality of Harr

measure. This property says π2 = π, and π is a section of V G ∈ V .

(3) π commutes with G-action.

Proof. π(ρ(h)v) =
∫
G
ρ(g)ρ(h)vdg =

∫
G
ρ(g)vdg = π(v) = ρ(h)π(v), where the last

equality is due property (1).

So ker(π) is a G-subrepresentation and V ∼= V G ⊕ ker(π). π|V G = Id, π|ker(π) = 0.
This implies Tr(π) = dimV G. On the other hand, Tr(π) =

∫
G
Tr(ρ(g))dg. Therefore

dim(V G) =
∫
G
Tr(ρ(g))dg.

Define the character of ρ to be the map χ : G → C, χ(g) = Tr(ρ(g)). The following are
some examples and properties of characters.

Example 4. (1) If V = C, ρ(g) = Id, then χ(g) = 1

(2) If V = Cn, G = U(n), then χ(g) = Tr(g) =
∑n

j=1 e
iθj , where eiθj ’s are the eigenvalues

of G.

(3) χV⊕W (g) = χV (g) + χW (g)

(4) χV⊗W (g) = χV (g)χW (g)

(5) Let V ∗ be the dual space of V , then χV ∗(g) = χV (g)

(5) is not true for general topological groups. For a counterexample, let G = C∗, ρ(a) = (a)
as a 1 by 1 matrix acting on V . Then χ(a) = a. Then the action of a on V ∗ is multiplication
by (a−1). So χV ∗(a) = a−1. On a compact subgroup: circle S1 = {eiθ}, (eiθ)−1 = e−iθ. But on
C∗, a−1 6= a for most a. Another example is GL(2) acting on V = C2 by multiplication. ( a 0

0 b )
acts on V ∗ as multiplication of

(
a−1 0
0 b−1

)
. Hence χV (( a 0

0 b )) = a + b, whereas χV ∗(( a 0
0 b )) =

a−1 + b−1, which is another counterexample of (5). However, what is true for general group
is χV (g) = χV ∗(g−1)

Theorem 5. dimV G =
∫
G
χV (g)dg.

One application of this theorem: Let V,W be G-representation acting on Hom(U,W ) ∼=
V ∗ ⊗W , by (g · φ)(v) = ρW (g) · φ · ρV (g−1) · (v). Note Hom(V,W )G = HomG(V,W ). So

dimHomG(V,W ) =
∫
G
χV (g)χW (g)dg.

Corollary 6. If V and W are simple, then
∫
G
χV (g)χWgdg =

{
1, if V ∼= W

0, if V 6∼= W
.
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Corollary 7. Characters of simple representations are orthonormal in CG, with Hermitian
product 〈φ, ϕ〉 =

∫
G
ϕ(g)φ(g)dg.

Corollary 8. Characters of simple represntations are linearly independent in CG, where CG

is the set of functions from G to C.

Corollary 9. If χV = χW , then V ∼= W .

Proof. Let V = ⊕iU⊕ai
i , W = ⊕iU⊕bi

i . Then
∑

i aiχUi
=
∑

i biχUi
, by the last corollary,

ai = bi. �
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