LECTURE 12: REPRESENTATION OF COMPACT GROUP AND ITS
CHARACTERS

SCRIBE: YI SU

In this lecture, G is a compact group, and all representations are continuous unless specified
otherwise. In the previous lecture, we showed that every representation is a direct sum of
simple representations.

Lemma 1 (Schur’'s Lemma). If V is a simple representation of group G over C, then
Endg(V)=C- Id.

Proof. Let A :V — V commute with G action. Over C, the matrix A has eigenvalue A, so
ker(A — X - Id) # 0. On the other hand ker(A — X - Id) is a subrepresentation of V', so it is
V. Thus, A= \-1d O

The proof of lemma also gives an algorithm for decomposing a representation into subrep-
resentations. If the representation is given in some explicit way, then computing Endg (V)
is a matter of linear algebra. Generate a random element of Endg(V); its eigenspaces are
subreps of V.

Proposition 2. IfV and W are simple G-representations, and V 2% W, then Homg(V,W) =
0.

Proof. We prove the contrapositive statement: if there is a nonzero G-commuting homomor-
phism from V to W, then V = W.

Let A : V — W be such nonzero homomorphism. The subrepresentation ker(A) of V does
not equal to V, so ker(A) = 0. Similarly the subrepresentation Im(A) of W does not equal
to 0, so Im(A) = W. Therefore, A is both injective and surjective, thus a bijection. O

Following the above results, let U; be a list pairwise nonisomorphic simple representations,
and V = QU W = @Ui@b". Then Homeg(V,W) = @&;Mat,,«,,C. Also, if U is a simple
representation, and V' is any representation, then V' = W, & Wy, where Wi = U®® and W,
has no subrepresentation isomorphic to U. In another word, U isotypic component of V is
the image of Hom(U, V)@ U — V.

Corollary 3. If ®;U " = @iUi@bi, then a; = b;.

Proof. Isomorphism means that we have inverse maps g,h between the spaces. Say g =
(91,---,9n), where g; € Mat, «,»,C, and h = (hy,...,h,), where h; € Maty,«,,C. The
matrices g; and h; are inverse of each other, so they have to be square matrices, which shows

Now let V be a continuous finite dimensional representation. One knows that V¢ C V as
a subrepresentation, so V. = V¢ @ W, W is some G-representation. We would like to find
out W explicitly. Define 7 : V' — V by m(v) = [, p(g)vdg, or m = [, p(g)dg. 7 has following

properties:
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(1) Vo e V, 7T(U) eve

Proof. p(h = [op(h)p(g)vdg = [, p(gh)vdg = [, p(g)vdg = m(v). The third
equality is due do the left 1nvar1ant property of the Harr measure.

(2) If v € VE, then 7(v) = v.

Proof. fG p(g)vdg = |, o vdg = v. The last equality is due to the normality of Harr
measure. This property says 72 = 7, and 7 is a section of V& € V.

(3) m commutes with G-action.

Proof. m(p = Jop(g)p(h)vdg = [, p(g)vdg = w(v) = p(h)m(v), where the last
equality is due property (1)

So ker(m) is a G-subrepresentation and V' = V& @ ker(m). 7lye = Id, Tlyer(r) = 0.
This implies Tr (7 ) = dim V%  On the other hand, Tr(m) = [,Tr(p(g))dg. Therefore
dim(VY) = [, Tr(p(g))dy.

Define the character of p to be the map x : G — C, x(g9) = Tr(p(g)). The following are
some examples and properties of characters.

Example 4. (1) If V =C, p(g) = Id, then x(g) =1

(2) IfV=C", G =U(n), thenx(g) =Tr(g) = > ;_, e where € ’s are the eigenvalues
of G.

3) xvew(9) = xv(g) +xw(g)

(3)
(4) xvew(9) = xv(g)xw(9)
(5) Let V* be the dual space of V', then xv+(g) = xv(9)

(5) is not true for general topological groups. For a counterexample, let G = C*, p(a) = (a)
as a 1 by 1 matrix acting on V. Then x(a) = a. Then the action of a on V* is multiplication
by (a™1). So xy+(a) = a~*. On a compact subgroup: circle S! = {e?}, (e?)~! = e~ But on
C*, a=! # @ for most a. Another example is GL(2) acting on V = C? by multiplication. (¢9)
acts on V* as multiplication of (9" % ). Hence xv((§9)) = a + b, whereas xv-((§9)) =

a! + b7, which is another counterexample of (5). However, what is true for general group

is xv(g) = xv-(g™")

Theorem 5. dim V% = [ xv(g)dy.

>~

One application of this theorem: Let VW be G-representation acting on Hom(U, W)
VoW, by (g-¢)(v) = pw(g)-o-pv(g™t) - (v). Note Hom(V,W)¥ = Homg(V,W). So
dim Homg(V,W) = fG xv(9)xw(g)dg.

1, fVEwW

Corollary 6. If V and W are simple, then [, xv(g)xwgdg = {O, iV W

2



Corollary 7. Characters of simple representations are orthonormal in C%, with Hermitian

product (¢, ) = [, 0(9)¢(9)dyg.

Corollary 8. Characters of simple represntations are linearly independent in C%, where C%
1s the set of functions from G to C.

Corollary 9. If xy = xw, then V = W.

Proof. Let V. = U™, W = @,U™. Then Y. a;xv, = 3., bixv,, by the last corollary,



