
NOTES FOR OCTOBER 12

SCRIBE DAVID SPEYER

The goal for today’s lecture is to prove:

Theorem 1. The characters of polynomial GLn irreps are the Schur functions.

The key will be to prove the following Peter-Weyl-like theorem

Theorem 2. Consider the polynomial ring in n2 variables zij. As a GLn × GLn representation,
we have

C[zij ] ∼=
⊕

V a polynomial irrep
V ∨ ⊗ V.

As in Peter-Weyl, this sum means to take each isomorphism class once.
We continue the abbreviations

G = GLn K = U(n) T = {diag(z1, . . . , zn) : zi ∈ C∗} S = K ∩ T = {diag(eiθ1 , . . . , eiθn)}.

1. Proof of Theorem 2

We have a map C[zij ] → C0(K) by restricting functions to the unitary group. Since polynomials
in the zij are analytic functions, this map is injective by the key lemma from last time. We claim
that it lands in O(K). Proof: C[zij ] =

⊕
dC[zij ]d, where C[zij ]d is homogenous polynomials of

degree d. Now, C[zij ]d is clearly a finite dimensional K ×K subrep of C0(K). So, by results from
October 8, it is in O(K).
Therefore, C[zij ] ∼=

⊕
V ∈S V

∨ ⊗ V for some set S of simple representations of K. We now must
determine what the set S is.
Let V occur in C[zij ]. Looking at the 1×G action on V , it is clear that V is a polynomial G rep.
So every representation V ∈ S is the restriction of a polynomial representation of G.
On the other hand, if V is a polynomial representation of G, then the embedding End(V )∨ → C0(G)
clearly lands in C[zij ]. Explicitly, we are saying that λ(ρV (g)) is a polynomial in the z’s, given that
the entries of ρv(g) are such a polynomial; that is obvious.
So we conclude that S is the set of polynomial representations of G as desired.

2. A combinatorial consequence

Consider both sides of Theorem 2 as T ×T representations. To be precise, we are going to be acting
by diag(x−11 , x−12 , . . . , x−1n )× diag(y1, y2, . . . , yn). (The inverses in the first term are precisely there
to cancel the inverses defining the action of G×G on C0(G).)
On the left hand side, zij transforms by xiyj . So the character of the left hand side is∏

1≤i,j≤n

1

1− xiyj
.

On the right hand side, diag(x−11 , x−12 , . . . , x−1n )× diag(y1, y2, . . . , yn) acts on V ∨ ⊗ V by

χV ∨(x−11 , . . . , x−1n )χV (y1, . . . , yn) = χV (x1, . . . , xn)χV (y1, . . . , yn).

So we deduce ∏
1≤i,j≤n

1

1− xiyj
=

∑
V a polynomial irrep

χV (x1, . . . , xn)χV (y1, . . . , yn).

3. Finishing the proof

We would like to deduce that the χV are the Schur functions. There are two ways to finish the
proof from here, both slightly more awkward than I would like.
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Method 1. From a homework problem, χV (x1, . . . , xn) is a homogenous polynomial. As we noted
in the previous class, we already know that the number of polynomal irreps of degree d is equal to
the number of partitions of d. By a lemma proved way back on September 12, this means that the
χV are self dual. Also, χV is in Λ by the previous class. By another lemma from September 12, a
self dual basis of Λ must be ±sλ. It is clear that χV has nonnegative coefficients, so the plus sign
is correct. �

Method 2. We don’t really need to know that the number of degree d polynomial irreps is p(d).
Indeed, if fi is any family of symmetric polynomials with integer coefficients obeying

∏
1/(1 −

xiyj) =
∑
fi(x)fi(y), then I claim that the list of fi contains each ±sλ exactly once, plus possibly

some occurrences of the 0 function. Proof sketch: Let fi =
∑

λ aiλsλ. Comparing coefficients of
sλ(x)sλ(y), we see that

∑
i a

2
iλ = 1. So, for fixed λ, exactly one aiλ is ±1 and the rest are zero.

Comparing coefficients of sλ(x)sµ(y), we see that, for fixed i, at most one ai,λ is nonzero. So the
χV are ± the sλ, and maybe some zero functions. But it is clear that the χV are nonzero and have
nonnegative coefficients, so again we win. �

4. Concluding comments

• If we look at the coordinate ring of GLn, namely C[zij ][det−1], we get
⊕
V ∨ ⊗ V where the sum

is over rational representations.
• The characters of the rational irreps are of the form

(x1x2 . . . xn)−Nsλ(x1, . . . , xn).

Proof: Just tensor with a high power of the determinant representation to make it into a polynomial
representation. We have

s(λ1+1,λ2+1,...,λn+1)(x1, x2, . . . , xn) = (x1x2 . . . xn)sλ1,λ2,...,λn(x1, x2, . . . , xn).

As a result, the same symmetric Laurent polynomial can be expressed using more than one pair
(λ,N) as above. A nonredundant indexing set is the set of integer sequences µ1 ≥ µ2 ≥ · · · ≥ µn,
where we do not impose that µn ≥ 0. The correspondence is that µi = λi −N .
• It follows immediately from the above that 〈χV , χW 〉 = dim HomG(V,W ), since the Schurs are
orthonormal.
•We can look at C[zij ] where 1 ≤ i ≤ m and 1 ≤ j ≤ n as a GLm×GLn rep. We have the equality
of generating functions

m∏
i=1

n∏
j=1

1

1− xiyj
=

∑
λ

sλ(x1, . . . , xm)sλ(y1, . . . , yn).

(Just take the identity in infinitely many variables and stick in 0 for the appropriate x and y
variables.) So

C[zij ] ∼=
⊕
λ

Vλ(m)⊗ Vλ(n)

where Vλ(m) is the representation of GLm with character sλ(x1, . . . , xm). The summands with
`(λ) > min(m,n) are zero, so we can equivalently write

C[zij ] ∼=
⊕

`(λ)<min(m,n)

Vλ(m)⊗ Vλ(n).


