NOTES FOR OCTOBER 12

SCRIBE DAVID SPEYER

The goal for today's lecture is to prove:

Theorem 1. The characters of polynomial GL_n irreps are the Schur functions.

The key will be to prove the following Peter-Weyl-like theorem

Theorem 2. Consider the polynomial ring in n^2 variables z_{ij} . As a $GL_n \times GL_n$ representation, we have

$$\mathbb{C}[z_{ij}] \cong \bigoplus_{Va \text{ polynomial irrep}} V^{\vee} \otimes V.$$

As in Peter-Weyl, this sum means to take each isomorphism class once. We continue the abbreviations

$$G = GL_n \quad K = U(n) \quad T = \{ \operatorname{diag}(z_1, \dots, z_n) : z_i \in \mathbb{C}^* \} \quad S = K \cap T = \{ \operatorname{diag}(e^{i\theta_1}, \dots, e^{i\theta_n}) \}.$$

1. Proof of Theorem 2

We have a map $\mathbb{C}[z_{ij}] \to C^0(K)$ by restricting functions to the unitary group. Since polynomials in the z_{ij} are analytic functions, this map is injective by the key lemma from last time. We claim that it lands in $\mathcal{O}(K)$. Proof: $\mathbb{C}[z_{ij}] = \bigoplus_d \mathbb{C}[z_{ij}]_d$, where $\mathbb{C}[z_{ij}]_d$ is homogenous polynomials of degree d. Now, $\mathbb{C}[z_{ij}]_d$ is clearly a finite dimensional $K \times K$ subrep of $C^0(K)$. So, by results from October 8, it is in $\mathcal{O}(K)$.

Therefore, $\mathbb{C}[z_{ij}] \cong \bigoplus_{V \in S} V^{\vee} \otimes V$ for some set S of simple representations of K. We now must determine what the set S is.

Let V occur in $\mathbb{C}[z_{ij}]$. Looking at the $1 \times G$ action on V, it is clear that V is a polynomial G rep. So every representation $V \in S$ is the restriction of a polynomial representation of G.

On the other hand, if V is a polynomial representation of G, then the embedding $\operatorname{End}(V)^{\vee} \to C^0(G)$ clearly lands in $\mathbb{C}[z_{ij}]$. Explicitly, we are saying that $\lambda(\rho_V(g))$ is a polynomial in the z's, given that the entries of $\rho_v(g)$ are such a polynomial; that is obvious.

So we conclude that S is the set of polynomial representations of G as desired.

2. A COMBINATORIAL CONSEQUENCE

Consider both sides of Theorem 2 as $T \times T$ representations. To be precise, we are going to be acting by $\operatorname{diag}(x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}) \times \operatorname{diag}(y_1, y_2, \ldots, y_n)$. (The inverses in the first term are precisely there to cancel the inverses defining the action of $G \times G$ on $C^0(G)$.)

On the left hand side, z_{ij} transforms by $x_i y_j$. So the character of the left hand side is

$$\prod_{1 \le i,j \le n} \frac{1}{1 - x_i y_j}$$

On the right hand side, $\operatorname{diag}(x_1^{-1}, x_2^{-1}, \dots, x_n^{-1}) \times \operatorname{diag}(y_1, y_2, \dots, y_n)$ acts on $V^{\vee} \otimes V$ by

$$\chi_{V^{\vee}}(x_1^{-1},\ldots,x_n^{-1})\chi_V(y_1,\ldots,y_n) = \chi_V(x_1,\ldots,x_n)\chi_V(y_1,\ldots,y_n).$$

So we deduce

$$\prod_{1 \le i,j \le n} \frac{1}{1 - x_i y_j} = \sum_{V \text{a polynomial irrep}} \chi_V(x_1, \dots, x_n) \chi_V(y_1, \dots, y_n).$$

3. Finishing the proof

We would like to deduce that the χ_V are the Schur functions. There are two ways to finish the proof from here, both slightly more awkward than I would like.

Method 1. From a homework problem, $\chi_V(x_1, \ldots, x_n)$ is a homogenous polynomial. As we noted in the previous class, we already know that the number of polynomial irreps of degree d is equal to the number of partitions of d. By a lemma proved way back on September 12, this means that the χ_V are self dual. Also, χ_V is in Λ by the previous class. By another lemma from September 12, a self dual basis of Λ must be $\pm s_{\lambda}$. It is clear that χ_V has nonnegative coefficients, so the plus sign is correct. \Box

Method 2. We don't really need to know that the number of degree d polynomial irreps is p(d). Indeed, if f_i is any family of symmetric polynomials with integer coefficients obeying $\prod 1/(1 - x_iy_j) = \sum f_i(x)f_i(y)$, then I claim that the list of f_i contains each $\pm s_{\lambda}$ exactly once, plus possibly some occurrences of the 0 function. Proof sketch: Let $f_i = \sum_{\lambda} a_{i\lambda}s_{\lambda}$. Comparing coefficients of $s_{\lambda}(x)s_{\lambda}(y)$, we see that $\sum_i a_{i\lambda}^2 = 1$. So, for fixed λ , exactly one $a_{i\lambda}$ is ± 1 and the rest are zero. Comparing coefficients of $s_{\lambda}(x)s_{\mu}(y)$, we see that, for fixed i, at most one $a_{i,\lambda}$ is nonzero. So the χ_V are \pm the s_{λ} , and maybe some zero functions. But it is clear that the χ_V are nonzero and have nonnegative coefficients, so again we win. \Box

4. Concluding comments

• If we look at the coordinate ring of GL_n , namely $\mathbb{C}[z_{ij}][\det^{-1}]$, we get $\bigoplus V^{\vee} \otimes V$ where the sum is over rational representations.

• The characters of the rational irreps are of the form

$$(x_1x_2\ldots x_n)^{-N}s_\lambda(x_1,\ldots,x_n).$$

Proof: Just tensor with a high power of the determinant representation to make it into a polynomial representation. We have

$$s_{(\lambda_1+1,\lambda_2+1,...,\lambda_n+1)}(x_1,x_2,...,x_n) = (x_1x_2...x_n)s_{\lambda_1,\lambda_2,...,\lambda_n}(x_1,x_2,...,x_n).$$

As a result, the same symmetric Laurent polynomial can be expressed using more than one pair (λ, N) as above. A nonredundant indexing set is the set of integer sequences $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$, where we do **not** impose that $\mu_n \ge 0$. The correspondence is that $\mu_i = \lambda_i - N$.

• It follows immediately from the above that $\langle \chi_V, \chi_W \rangle = \dim \operatorname{Hom}_G(V, W)$, since the Schurs are orthonormal.

• We can look at $\mathbb{C}[z_{ij}]$ where $1 \leq i \leq m$ and $1 \leq j \leq n$ as a $GL_m \times GL_n$ rep. We have the equality of generating functions

$$\prod_{i=1}^m \prod_{j=1}^n \frac{1}{1-x_i y_j} = \sum_{\lambda} s_{\lambda}(x_1, \dots, x_m) s_{\lambda}(y_1, \dots, y_n).$$

(Just take the identity in infinitely many variables and stick in 0 for the appropriate x and y variables.) So

$$\mathbb{C}[z_{ij}] \cong \bigoplus_{\lambda} V_{\lambda}(m) \otimes V_{\lambda}(n)$$

where $V_{\lambda}(m)$ is the representation of GL_m with character $s_{\lambda}(x_1, \ldots, x_m)$. The summands with $\ell(\lambda) > \min(m, n)$ are zero, so we can equivalently write

$$\mathbb{C}[z_{ij}] \cong \bigoplus_{\ell(\lambda) < \min(m,n)} V_{\lambda}(m) \otimes V_{\lambda}(n).$$