NOTES FOR OCTOBER 12

SCRIBE DAVID SPEYER

The goal for today’s lecture is to prove:
Theorem 1. The characters of polynomial GL,, irreps are the Schur functions.
The key will be to prove the following Peter-Weyl-like theorem

Theorem 2. Consider the polynomial ring in n?

we have
Clzi] = P VeV
V' a polynomial irrep

As in Peter-Weyl, this sum means to take each isomorphism class once.
We continue the abbreviations

G=GL, K=U(n) T={diag(z1,...,2n):2 €C*} S§=KnNT = {diag(e",... e"“)}.

variables z;;. As a GLy x GLy, representation,

1. PROOF OF THEOREM 2

We have a map C[z;;] — C°(K) by restricting functions to the unitary group. Since polynomials
in the z; are analytic functions, this map is injective by the key lemma from last time. We claim
that it lands in O(K). Proof: C[z;] = @,Clzij]q, where Clz;;]q is homogenous polynomials of
degree d. Now, C[z;;], is clearly a finite dimensional K x K subrep of C°(K). So, by results from
October 8, it is in O(K).

Therefore, Clz;j] = Py g VY @ V for some set S of simple representations of K. We now must
determine what the set S' is.

Let V occur in C[z;;]. Looking at the 1 x G action on V/, it is clear that V' is a polynomial G rep.
So every representation V' € S is the restriction of a polynomial representation of G.

On the other hand, if V' is a polynomial representation of i, then the embedding End(V)" — C°(G)
clearly lands in C[z;;]. Explicitly, we are saying that A(py(g)) is a polynomial in the z’s, given that
the entries of p,(g) are such a polynomial; that is obvious.

So we conclude that .S is the set of polynomial representations of G as desired.

2. A COMBINATORIAL CONSEQUENCE

Consider both sides of Theorem 2 as T x T representations. To be precise, we are going to be acting

by diag(xl_l, ar:2_1, o, oY) x diag(y1,y2, - - -, yn). (The inverses in the first term are precisely there

to cancel the inverses defining the action of G x G on C°(G).)
On the left hand side, z;; transforms by x;y;. So the character of the left hand side is

11 _
1<igen 1 T TiYj
On the right hand side, diag@fl, x;l, o) x diag(yr, Y2, - - -, Yn) acts on VV @ V by
XvVv (xl_la s ,mﬁl)XV@la ce ;yn) - XV(xh R xn)XV(yla oo ,yn)-

So we deduce

1
H 1 — 2y, - ZVa polynomial irrep Xv(xh o ,xn)xv(y1, e ,yn)'
1<ij<n T Y

3. FINISHING THE PROOF

We would like to deduce that the xy are the Schur functions. There are two ways to finish the
proof from here, both slightly more awkward than I would like.
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Method 1. From a homework problem, xy(z1,...,z,) is a homogenous polynomial. As we noted
in the previous class, we already know that the number of polynomal irreps of degree d is equal to
the number of partitions of d. By a lemma proved way back on September 12, this means that the
xv are self dual. Also, xy is in A by the previous class. By another lemma from September 12, a
self dual basis of A must be +s). It is clear that xy has nonnegative coefficients, so the plus sign
is correct. [

Method 2. We don’t really need to know that the number of degree d polynomial irreps is p(d).
Indeed, if f; is any family of symmetric polynomials with integer coefficients obeying [[1/(1 —
ziy;) = > fi(x) fi(y), then I claim that the list of f; contains each +s) exactly once, plus possibly
some occurrences of the 0 function. Proof sketch: Let f; = >, ajxsy. Comparing coefficients of
sx(z)sx(y), we see that Y. a?, = 1. So, for fixed A, exactly one a; is &1 and the rest are zero.
Comparing coeflicients of sy (x)s,(y), we see that, for fixed ¢, at most one a; ) is nonzero. So the
xv are + the sy, and maybe some zero functions. But it is clear that the xy are nonzero and have
nonnegative coefficients, so again we win. [J

4. CONCLUDING COMMENTS

e If we look at the coordinate ring of G'L,, namely C[z;;][det '], we get @ V" ® V where the sum
is over rational representations.
e The characters of the rational irreps are of the form

(129 ... 20) NVsn(x1, ..., xn).

Proof: Just tensor with a high power of the determinant representation to make it into a polynomial
representation. We have

S()\1+17)\2+17...7)\n+1)(.%1, Ly e ey xn) = (:E1£C2 e xn)S)\l,)Q’._.,)\n (.1‘1, Ty ,:L‘n).
As a result, the same symmetric Laurent polynomial can be expressed using more than one pair
(A, N) as above. A nonredundant indexing set is the set of integer sequences p1 > po >« > i,
where we do not impose that u, > 0. The correspondence is that pu; = A\; — N
e It follows immediately from the above that (xy,xw) = dim Homg(V, W), since the Schurs are
orthonormal.
e We can look at C[z;;] where 1 <i <m and 1 < j <n as a GLy, x GL, rep. We have the equality
of generating functions

HHl— _23/\ Tl ooy Tm)SA(YLy oy Yn)-

i=1j=1

(Just take the identity in infinitely many variables and stick in O for the appropriate = and y
variables.) So

Clasj] = @ Va(m) ® Vy(n)

where V) (m) is the representation of GL,, Wlth character sy(z1,...,%m). The summands with
£(\) > min(m, n) are zero, so we can equivalently write

C[ZU] = @ V)\(m) X V)\(n)

£(A)<min(m,n)



