NOTES FOR OCTOBER 17, 2012

CHARLOTTE CHAN

We spent some time discussing Problem 5d on Problem Set 5. The analogous finite group statement is the following:

Let V be a faithful G-representation. Set $W = V \oplus V^{\vee} \oplus \mathbb{C}$. Then every irreducible representation U occurs in $W^{\oplus N}$ for $N \gg 0$.

1. Some comments from last time

$$\mathbb{C}[x_{ij}] = \bigoplus V^{\vee} \otimes V,$$

where V varies over polynomial irreducible representations of GL_n and the equality above is taken as $(GL_n \times GL_n)$ -representations. We want to point out that we similarly have:

$$\mathbb{C}[z_{ij}]_{1 \le i \le m, 1 \le j < n} = \bigoplus_{\lambda, \,\ell(\lambda) \le \min(m,n)} V_{\lambda}^{\vee}(m) \otimes V_{\lambda}(n)$$

as $(\operatorname{GL}_n \times \operatorname{GL}_n)$ -representations.

Proof. We have

$$\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{1-x_i y_j} = \sum_{\lambda} S_{\lambda}(x_1, \dots, x_m) S_{\lambda}(y_1, \dots, y_n).$$

Note that $S_{\lambda}(x_1, \ldots, x_m) = 0$ if $\ell(\lambda) > m$ and $S_{\lambda}(y_1, \ldots, y_n)$ if $\ell(\lambda) > n$. The result follows. \Box

Last time that we showed that we have a bijective correspondence between polynomial GL_n representations and partitions λ with $\ell(\lambda) \leq n$; and the character of V_{λ} is s_{λ} . We want to point out that this implies:

$$\dim \operatorname{Hom}_{\operatorname{GL}}(V, W) = \langle \chi_V, \chi_W \rangle.$$

(Consider χ_V and χ_W as polynomials in Λ using the combinatorially defined inner product on Λ .) Note that if $|\lambda| > n$, the we use the standard inclusion $\Lambda_n \hookrightarrow \Lambda$.

Notation. V_{λ} or $V_{\lambda}(n)$ is the GL_n-representation with character $S_{\lambda}(x_1, \ldots, x_n)$.

2. How we will construct V_{λ}

Recall that

$$h_{\lambda} = s_{\lambda} + \sum_{\mu \prec \lambda} \kappa_{\lambda \mu} s_{\mu},$$
$$e_{\lambda^{\mathrm{T}}} = s_{\lambda} + \sum_{\mu \succ \lambda} \kappa_{\lambda^{\mathrm{T}} \mu^{\mathrm{T}}} s_{\mu}.$$

So the equality

$$\langle h_{\lambda}, e_{\lambda^{\mathrm{T}}} \rangle = 1$$

comes from the s_{λ} term. Let

$$H = \bigotimes_{k} \operatorname{Sym}^{\lambda_{k}} V,$$
$$E = \bigotimes_{k} \Lambda^{\lambda_{k}^{\mathrm{T}}} V.$$

So $\chi_H = h_\lambda$ and $\chi_E = e_{\lambda^{\mathrm{T}}}$. We see that

$$H = V_{\lambda} \oplus \bigoplus_{\mu \prec \lambda} V_{\mu}^{\oplus \kappa_{\lambda\mu}},$$
$$E = V_{\lambda} \oplus \bigoplus_{\mu \succ \lambda} V_{\mu}^{\oplus \kappa_{\lambda} T_{\mu} T}.$$

So $\operatorname{Hom}_{\operatorname{GL}(V)}(E, H) \cong \mathbb{C}$ and if φ is a $\operatorname{GL}(V)$ -equivariant homomorphism $E \to H$, then $\operatorname{Im}(\varphi) \cong V_{\lambda}$. Our next goal will be to describe such a map φ explicitly.