NOTES FOR OCTOBER 19, 2012: SCHUR FUNCTORS

AARON PRIBADI

1. HOMEWORK QUESTIONS

Is Problem 1 as simple as it appears?
Answer: Yes. g(z1,. -, Tk, Y1y -y Yn—k) = f(@1, o, Ty Y1y -+, Yn—k)-

Can something be said about expanding s, (x1,...,Zk, ¥1,...,Yn—k) in the basis of prod-
ucts sy(z1,...,2%)Su(Y1,---,Yn—k)? Answer: Yes! These are the Littlewood-Richardson coeffi-
cients.

SV(:Ela o Ty Y1y - 73/n—k) = Z CKMSA(x)SM(y)
A
They are all the coefficients of multiplication:

sx(2)su(z) = Z X usv(2)-

This is not obvious, but you know enough to prove it.

Is it always true that representations of G x H can be broken up into P U; ®V;, where
U; and V; are representations of G and H respectively?

Answer: If for groups G and H, every representation is a direct sum of simples, then G x H
also has this property, and G x H simples are of the form V ® W, where V is G-simple and W is
H-simple.

Proof sketch: Let X be G x H simple. Let V' C X be a G-simple subrepresentation. Define
W = Homg(V, X). Map V@ W — X as a G x H representation. The map is surjective since X
simple. It is injective by looking at X =V & .--- ¢V e U. O

Argument stolen from http://math.stackexchange.com/questions/136048. This seems to be
the sort of thing everyone knows, but doesn’t appear in enough texts.

Some additional points not mentioned in class: If we are working over a field which is not
algebracally closed, then simple ® simple need not be simple. EG, let G = Z/3 acting on a two

dimensional real vector space V' by (:\}52 \1%2> Then V is simple (over R) but V ®g V' is not
simple. However, over C, it is true that simple ® simple is simple. For finite groups, this is an easy
application of character theory; it is actually true for all groups.

For groups whose representations are not all direct sums of simples, not every rep breaks up as
a direct sum of tensor products. For example, let G be the additive group Z and let G x G act on
C? by p(j,k) = (éj Tk ) This representation cannot be written as a nontrivial direct sum; and it
is not the tensor product of a G-rep with another G-rep.

2. FINDING THE IRREP V), (FROM LAST CLASS)

Let X\ be a partition of n. We want to construct V), the GL(n) irrep with character s). Let
N = |)\|, and let V' = C". Define the two GL(n)-representations

H=Qsym*V and E=Q@QAY)*v
k k
which have characters xg = hy and xg = e,r, respectively. Recall that

hy = s+ E KauSu and e\t :s,\—|—Z/{/\TMTsu
B=A =
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so the equality (hy,e\r) comes from the sy term. It follows that the only GL(n) irrep that H and
E have in common is a single copy of V). Any non-zero GL(n)-equivariant map E — H or H — E
is actually a map from one copy of Vy to the other copy of V). Our goal is therefore to construct
such a map.

3. A GL(n)-EQUIVARIANT MAP E — H

We will construct a non-zero GL(V )-equivariant map F — H. The image of this map will be
the copy of V) in H.

Let’s think of Sym* V' and /\kV concretely. Note that Sym* V' is can be thought of as either a
subspace or a quotient of V®*. Viewing Sym” V as the subspace of V®* of Sj-invariant tensors,
there is the inclusion

Sym* V — V&
1
RN V(1) @+ * @ Vyy(k)-
) weSk

(Notation: We're writing elements of Sym* V' as monomials. This is not standardized.) Viewing
Sym” V as a quotient of V®", we have the projection map

VO 5 SymF vV
V1 & QU — V- Vg

which equates different permutations of a tensor. Similarly for /\kV, there are maps /\kV — yen
and V& — A*V defined by

1
VI A Avg = 2l (—l)wvw(1)®---®vw(k)

weESk
V1 Q- QU= v A Avg

so that A®V can also be viewed as either a subspace or a quotient of V. (Note: (—1)¥ is the
parity of the permutation.)

The map E — H is constructed out of the two parts E — VN — H inclusion and projection.
The cells of a Young tableau of shape A index the components of V&V (recall that N = |)|).
The columns index the components of £, and the rows index the components of H. For the map
E — V®N & H, include from FE into VOV by column, and project from V&N to H by row.

We give this construction by example. Consider the following partition:

112]3]4]
A=(421) A =(3211) 56
7

The leftmost column of the tableau corresponds with /\3V, the first component of E. It maps to
the first, fifth, and seventh components of V&V which in turn project to Sym* V', Sym?V, and V,
respectively (the first, second, and third rows). Or we can look at the following picture:

AV ® AV ® vV o ® |V

Sym*V  ®  Sym’V  ® 1%
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We need this ‘twisting’ to get non-zero map.
For a smaller example, consider

A=21) AT =(21) 1/2]

)

and the picture

/\/
\//

Sym?V ®

which is simple enough that we will write the map explicitly. The component of the map from /\2V
toVRVisuAv— ( ®v—v®u). On an arbitrary pure tensor in /\2V ® V, the whole map is

ANVeV — VeoveVv — Sym?V @V
(uAV)@w— {u@uwev—vRweu) — 5((uw) ®v— (Vw) @ u).
One special case is
(uAv)@uw+ (VAw)@u+ (wAu)@v—0

(which is suggestive of the Jacobi identity).

Since F — H is a GL(V)-equivariant map, it commutes with torus action. In weight x%xj, E
has one eigenvector (e; Aej) ®@e;, and its image is non-zero. In weight z;z 2, E has 3 eigenvectors,
(ei Nej) @ e, (e Neg) @ e, (e Aej) ®ej and their images span a 2 dimensional subspace of H.
The corresponding Schur function is

so1(x Z:z: T —i-QZ:z:,x]xk

4. OTHER APPROACHES (AND THE YOUNG SYMMETRIZER)

e We could map H — FE instead.

e We could try to map both E and H to V®V and intersect their images. But this might not
work. This is because even though both E and H have a copy of V), their images in V&N
might be isomorphic, but not the same, in which case their images would not intersect.

e We could think of H and F as subspaces of VOV, Let ay be projection onto H ¢ V¥ and
by be projection onto F C VON . Look at the image of axby. (Note the image of bya) will
be isomorphic to a)by but not equal, unless F¥ did meet H. This is the same issue as in the
previous bullet point.)

We’ll do the third option. What is a)? It is
ar: VN — H - voN,

the composition of projection and inclusion. It projects from V&N to a copy of H inside V&V,
Explicitly, the map is

1
GA(01®"'®UN):ﬁ Z Vi) @ -+ @ Viy(v)
e ke ’LUES)\IXMXSAI{

with a sum over permutations w € Sy that preserve the rows of the A-tableau. For example, with
A = (2,1) the map is given by

a21:U1®U2®U3I—>(U102)®03l—>%(U1®02®U3+U2®U1®U3).
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Similarly, by is

by VN 5 B — VN

1 w
b)\(vl R ® UN) = ()\T)ll — ()\T)K' Z(—l) Vw(l) R ® Vw(N)

with a sum over permutations w € Sy that preserve the columns of the A-tableau, so that b
projects from V& to a copy of F inside V®V. For example,

521:U1®’U2®’03i—>(’Ul/\v3)®1}2l—)%(U1®U2®’U3—03®U2®U1)

where we can see same ‘twisting’ that we had in the earlier construction.
The composition ayby of both projections is called the Young symmetrizer, and is written c,.
We can think of V) as the image of ¢y in VON,

5. FUNCTORIALITY

For any partition A, we claim that
V= V)\

is a functor (it is called the Schur Functor S)).
We first want to show that

(ex)? = kxex

for some constant ky, so that cy is almost an idempotent.
Think of Vy as a subset of VN, Write ¢y as a composition of projection and inclusion

e VEN Ly LN,
The map
Vi 5 VeN Sy,
is between irreducible representations, and by Schur’s lemma
mot=kyId
for some constant ky. Then
(ex)?=(iom)o(iom) =io(moi)om =ky(iom) = kycy

as desired. (Because 7 is inclusion, the constant k) ‘belongs’ to .)
This constant k) does not depend on V. Indeed, we can think about ay, by, and c) as elements
of C[S,], e.g.

1
I N Z w | € C[S]
1 ke wGS,\1><~~~><SAk

so that the computation (cy)? = (a)by)? is independent of the choice of V.
Now we show functoriality. Any linear map « : U — V lifts to a map Uy — V).

Uy — UeN

Joer

Vi e VO
K?T
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Let 8 : V — W be another map, and consider the composition Uy — V) — W,.

Uy ——— U®N Uy —L— USN Uy ——— U®N

}V@N a®N a®N
1
BTN N N
o 1 E

x Tix O ﬂ®N

yeN veN WeN
B geN O

W % W®N W % wenN Wy % WeN

Kﬂ- Hﬂ' T

) ¢ : ) 1 1 _ 1
We’ve made ‘c) commute with 5°. Also ET OB CA = ;M5 SO

Uy —s UeN

Ja@w Uy —b s U®N
— VEON - l(ﬂ oa)®N
lﬁ@’N Wy ¢— WeN
Wy ——— WoN nr

el

and we have functoriality.



