NOTES FOR OCTOBER 19, 2012: SCHUR FUNCTORS

AARON PRIBADI

1. HOMEWORK QUESTIONS

Is Problem 1 as simple as it appears?

Answer: Yes. $g(x_1, ..., x_k, y_1, ..., y_{n-k}) = f(x_1, ..., x_k, y_1, ..., y_{n-k}).$

Can something be said about expanding $s_{\nu}(x_1, \ldots, x_k, y_1, \ldots, y_{n-k})$ in the basis of products $s_{\lambda}(x_1, \ldots, x_k)s_{\mu}(y_1, \ldots, y_{n-k})$? Answer: Yes! These are the Littlewood-Richardson coefficients.

$$s_{\nu}(x_1, \dots, x_k, y_1, \dots, y_{n-k}) = \sum_{\lambda, \mu} c_{\lambda\mu}^{\nu} s_{\lambda}(x) s_{\mu}(y)$$

They are all the coefficients of multiplication:

$$s_{\lambda}(z)s_{\mu}(z) = \sum_{\nu} c^{\nu}_{\lambda\mu}s_{\nu}(z).$$

This is not obvious, but you know enough to prove it.

Is it always true that representations of $G \times H$ can be broken up into $\bigoplus U_i \otimes V_i$, where U_i and V_i are representations of G and H respectively?

Answer: If for groups G and H, every representation is a direct sum of simples, then $G \times H$ also has this property, and $G \times H$ simples are of the form $V \otimes W$, where V is G-simple and W is H-simple.

Proof sketch: Let X be $G \times H$ simple. Let $V \subset X$ be a G-simple subrepresentation. Define $W = \operatorname{Hom}_G(V, X)$. Map $V \otimes W \to X$ as a $G \times H$ representation. The map is surjective since X simple. It is injective by looking at $X = V \oplus \cdots \oplus V \oplus U$. \Box

Argument stolen from http://math.stackexchange.com/questions/136048. This seems to be the sort of thing everyone knows, but doesn't appear in enough texts.

Some additional points not mentioned in class: If we are working over a field which is not algebracally closed, then simple \otimes simple need not be simple. EG, let $G = \mathbb{Z}/3$ acting on a two dimensional real vector space V by $\begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}$. Then V is simple (over \mathbb{R}) but $V \otimes_{\mathbb{R}} V$ is not simple. However, over \mathbb{C} , it is true that simple \otimes simple is simple. For finite groups, this is an easy application of character theory; it is actually true for all groups.

For groups whose representations are not all direct sums of simples, not every rep breaks up as a direct sum of tensor products. For example, let G be the additive group \mathbb{Z} and let $G \times G$ act on \mathbb{C}^2 by $\rho(j,k) = \begin{pmatrix} 1 & j+k \\ 0 & 1 \end{pmatrix}$. This representation cannot be written as a nontrivial direct sum; and it is not the tensor product of a G-rep with another G-rep.

2. Finding the irrep V_{λ} (from last class)

Let λ be a partition of n. We want to construct V_{λ} , the GL(n) irrep with character s_{λ} . Let $N = |\lambda|$, and let $V = \mathbb{C}^n$. Define the two GL(n)-representations

$$H = \bigotimes_{k} \operatorname{Sym}^{\lambda_{k}} V$$
 and $E = \bigotimes_{k} \bigwedge^{(\lambda^{T})_{k}} V$

which have characters $\chi_H = h_\lambda$ and $\chi_E = e_{\lambda^T}$, respectively. Recall that

$$h_{\lambda} = s_{\lambda} + \sum_{\mu \prec \lambda} \kappa_{\lambda\mu} s_{\mu}$$
 and $e_{\lambda^T} = s_{\lambda} + \sum_{\mu \succ \lambda} \kappa_{\lambda^T \mu^T} s_{\mu}$

so the equality $\langle h_{\lambda}, e_{\lambda^{T}} \rangle$ comes from the s_{λ} term. It follows that the only GL(n) irrep that H and E have in common is a single copy of V_{λ} . Any non-zero GL(n)-equivariant map $E \to H$ or $H \to E$ is actually a map from one copy of V_{λ} to the other copy of V_{λ} . Our goal is therefore to construct such a map.

3. A GL(n)-Equivariant map $E \to H$

We will construct a non-zero GL(V)-equivariant map $E \to H$. The image of this map will be the copy of V_{λ} in H.

Let's think of $\operatorname{Sym}^k V$ and $\bigwedge^k V$ concretely. Note that $\operatorname{Sym}^k V$ is can be thought of as either a subspace or a quotient of $V^{\otimes k}$. Viewing $\operatorname{Sym}^k V$ as the subspace of $V^{\otimes k}$ of S_k -invariant tensors, there is the inclusion

$$\operatorname{Sym}^{k} V \to V^{\otimes k}$$
$$v_{1} \cdots v_{k} \mapsto \frac{1}{k!} \sum_{w \in S_{k}} v_{w(1)} \otimes \cdots \otimes v_{w(k)}$$

(Notation: We're writing elements of $\operatorname{Sym}^k V$ as monomials. This is not standardized.) Viewing $\operatorname{Sym}^k V$ as a quotient of $V^{\otimes n}$, we have the projection map

$$V^{\otimes k} \to \operatorname{Sym}^k V$$
$$v_1 \otimes \cdots \otimes v_k \mapsto v_1 \cdots v_k$$

which equates different permutations of a tensor. Similarly for $\bigwedge^k V$, there are maps $\bigwedge^k V \to V^{\otimes n}$ and $V^{\otimes n} \to \bigwedge^k V$ defined by

$$v_1 \wedge \dots \wedge v_k \mapsto \frac{1}{k!} \sum_{w \in S_k} (-1)^w v_{w(1)} \otimes \dots \otimes v_{w(k)}$$
$$v_1 \otimes \dots \otimes v_k \mapsto v_1 \wedge \dots \wedge v_k$$

so that $\bigwedge^k V$ can also be viewed as either a subspace or a quotient of $V^{\otimes n}$. (Note: $(-1)^w$ is the parity of the permutation.)

The map $E \to H$ is constructed out of the two parts $E \to V^{\otimes N} \to H$, inclusion and projection. The cells of a Young tableau of shape λ index the components of $V^{\otimes N}$ (recall that $N = |\lambda|$). The columns index the components of E, and the rows index the components of H. For the map $E \to V^{\otimes N} \to H$, include from E into $V^{\otimes N}$ by column, and project from $V^{\otimes N}$ to H by row.

We give this construction by example. Consider the following partition:

$$\lambda = (4, 2, 1) \qquad \lambda^T = (3, 2, 1, 1) \qquad \begin{array}{c|c} 1 & 2 & 3 & 4 \\ \hline 5 & 6 \\ \hline 7 \\ \end{array}$$

The leftmost column of the tableau corresponds with $\bigwedge^{3} V$, the first component of E. It maps to the first, fifth, and seventh components of $V^{\otimes N}$, which in turn project to $\operatorname{Sym}^{4} V$, $\operatorname{Sym}^{2} V$, and V, respectively (the first, second, and third rows). Or we can look at the following picture:

We need this 'twisting' to get non-zero map.

For a smaller example, consider

$$\lambda = (2,1) \qquad \lambda^T = (2,1) \qquad \qquad \boxed{\frac{1}{3}}$$

and the picture

which is simple enough that we will write the map explicitly. The component of the map from $\bigwedge^2 V$ to $V \otimes V$ is $u \wedge v \mapsto \frac{1}{2}(u \otimes v - v \otimes u)$. On an arbitrary pure tensor in $\bigwedge^2 V \otimes V$, the whole map is

$$\bigwedge^2 V \otimes V \to V \otimes V \otimes V \to \operatorname{Sym}^2 V \otimes V (u \wedge v) \otimes w \mapsto \frac{1}{2} (u \otimes w \otimes v - v \otimes w \otimes u) \mapsto \frac{1}{2} ((uw) \otimes v - (vw) \otimes u)$$

One special case is

$$(u \wedge v) \otimes w + (v \wedge w) \otimes u + (w \wedge u) \otimes v \mapsto 0$$

(which is suggestive of the Jacobi identity).

Since $E \to H$ is a GL(V)-equivariant map, it commutes with torus action. In weight $x_i^2 x_j$, E has one eigenvector $(e_i \wedge e_j) \otimes e_i$, and its image is non-zero. In weight $x_i x_j x_k$, E has 3 eigenvectors, $(e_i \wedge e_j) \otimes e_k$, $(e_j \wedge e_k) \otimes e_i$, $(e_k \wedge e_i) \otimes e_j$ and their images span a 2 dimensional subspace of H. The corresponding Schur function is

$$s_{21}(x) = \sum x_i^2 x_j + 2 \sum x_i x_j x_k$$

4. Other approaches (and the young symmetrizer)

- We could map $H \to E$ instead.
- We could try to map both E and H to $V^{\otimes N}$ and intersect their images. But this might not work. This is because even though both E and H have a copy of V_{λ} , their images in $V^{\otimes N}$ might be isomorphic, but not the same, in which case their images would not intersect.
- We could think of H and E as subspaces of $V^{\otimes N}$. Let a_{λ} be projection onto $H \subset V^{\otimes N}$, and b_{λ} be projection onto $E \subset V^{\otimes N}$. Look at the image of $a_{\lambda}b_{\lambda}$. (Note the image of $b_{\lambda}a_{\lambda}$ will be isomorphic to $a_{\lambda}b_{\lambda}$ but not equal, unless E did meet H. This is the same issue as in the previous bullet point.)

We'll do the third option. What is a_{λ} ? It is

$$a_{\lambda}: V^{\otimes N} \to H \to V^{\otimes N},$$

the composition of projection and inclusion. It projects from $V^{\otimes N}$ to a copy of H inside $V^{\otimes N}$. Explicitly, the map is

$$a_{\lambda}(v_1 \otimes \cdots \otimes v_N) = \frac{1}{\lambda_1! \cdots \lambda_k!} \sum_{w \in S_{\lambda_1} \times \cdots \times S_{\lambda_k}} V_{w(1)} \otimes \cdots \otimes V_{w(N)}$$

with a sum over permutations $w \in S_N$ that preserve the rows of the λ -tableau. For example, with $\lambda = (2, 1)$ the map is given by

$$a_{21}: v_1 \otimes v_2 \otimes v_3 \mapsto (v_1 v_2) \otimes v_3 \mapsto \frac{1}{2}(v_1 \otimes v_2 \otimes v_3 + v_2 \otimes v_1 \otimes v_3).$$

Similarly, b_{λ} is

$$b_{\lambda}: V^{\otimes N} \to E \to V^{\otimes N}$$
$$b_{\lambda}(v_1 \otimes \cdots \otimes v_N) = \frac{1}{(\lambda^T)_1! \cdots (\lambda^T)_{\ell}!} \sum_w (-1)^w V_{w(1)} \otimes \cdots \otimes V_{w(N)}$$

with a sum over permutations $w \in S_N$ that preserve the columns of the λ -tableau, so that b_{λ} projects from $V^{\otimes N}$ to a copy of E inside $V^{\otimes N}$. For example,

$$b_{21}: v_1 \otimes v_2 \otimes v_3 \mapsto (v_1 \wedge v_3) \otimes v_2 \mapsto \frac{1}{2}(v_1 \otimes v_2 \otimes v_3 - v_3 \otimes v_2 \otimes v_1)$$

where we can see same 'twisting' that we had in the earlier construction.

The composition $a_{\lambda}b_{\lambda}$ of both projections is called the **Young symmetrizer**, and is written c_{λ} . We can think of V_{λ} as the image of c_{λ} in $V^{\otimes N}$.

5. FUNCTORIALITY

For any partition λ , we claim that

$$V \mapsto V_{\lambda}$$

is a functor (it is called the **Schur Functor** \mathbb{S}_{λ}).

We first want to show that

 $(c_{\lambda})^2 = k_{\lambda} c_{\lambda}$

for some constant k_{λ} , so that c_{λ} is almost an idempotent.

Think of V_{λ} as a subset of $V^{\otimes N}$. Write c_{λ} as a composition of projection and inclusion

$$c_{\lambda}: V^{\otimes N} \xrightarrow{\pi} V_{\lambda} \xrightarrow{i} V^{\otimes N}.$$

The map

 $V_{\lambda} \stackrel{i}{\to} V^{\otimes N} \stackrel{\pi}{\to} V_{\lambda}$

is between irreducible representations, and by Schur's lemma

$$\pi \circ i = k_{\lambda} \operatorname{Id}$$

for some constant k_{λ} . Then

$$(c_{\lambda})^{2} = (i \circ \pi) \circ (i \circ \pi) = i \circ (\pi \circ i) \circ \pi = k_{\lambda}(i \circ \pi) = k_{\lambda}c_{\lambda}$$

as desired. (Because *i* is inclusion, the constant k_{λ} 'belongs' to π .)

This constant k_{λ} does not depend on V. Indeed, we can think about a_{λ}, b_{λ} , and c_{λ} as elements of $\mathbb{C}[S_n]$, e.g.

$$a_{\lambda} = \frac{1}{\lambda_1! \cdots \lambda_k!} \left(\sum_{w \in S_{\lambda_1} \times \cdots \times S_{\lambda_k}} w \right) \in \mathbb{C}[S_n]$$

so that the computation $(c_{\lambda})^2 = (a_{\lambda}b_{\lambda})^2$ is independent of the choice of V.

Now we show functoriality. Any linear map $\alpha: U \to V$ lifts to a map $U_{\lambda} \to V_{\lambda}$.

Let $\beta: V \to W$ be another map, and consider the composition $U_{\lambda} \to V_{\lambda} \to W_{\lambda}$.

We've made ' c_{λ} commute with β '. Also $\frac{1}{k_{\lambda}}\pi \circ \frac{1}{k_{\lambda}}c_{\lambda} = \frac{1}{k_{\lambda}}\pi$, so

and we have functoriality.