
NOTES FOR OCTOBER 19, 2012: SCHUR FUNCTORS

AARON PRIBADI

1. homework questions

Is Problem 1 as simple as it appears?
Answer: Yes. g(x1, . . . , xk, y1, . . . , yn−k) = f(x1, . . . , xk, y1, . . . , yn−k).
Can something be said about expanding sν(x1, . . . , xk, y1, . . . , yn−k) in the basis of prod-

ucts sλ(x1, . . . , xk)sµ(y1, . . . , yn−k)? Answer: Yes! These are the Littlewood-Richardson coeffi-
cients.

sν(x1, . . . xk, y1, . . . , yn−k) =
∑
λ,µ

cνλµsλ(x)sµ(y)

They are all the coefficients of multiplication:

sλ(z)sµ(z) =
∑
ν

cνλµsν(z).

This is not obvious, but you know enough to prove it.
Is it always true that representations of G×H can be broken up into

⊕
Ui⊗Vi, where

Ui and Vi are representations of G and H respectively?
Answer: If for groups G and H, every representation is a direct sum of simples, then G × H

also has this property, and G×H simples are of the form V ⊗W , where V is G-simple and W is
H-simple.

Proof sketch: Let X be G × H simple. Let V ⊂ X be a G-simple subrepresentation. Define
W = HomG(V,X). Map V ⊗W → X as a G ×H representation. The map is surjective since X
simple. It is injective by looking at X = V ⊕ · · · ⊕ V ⊕ U . �

Argument stolen from http://math.stackexchange.com/questions/136048. This seems to be
the sort of thing everyone knows, but doesn’t appear in enough texts.

Some additional points not mentioned in class: If we are working over a field which is not
algebracally closed, then simple ⊗ simple need not be simple. EG, let G = Z/3 acting on a two

dimensional real vector space V by
(
−1/2

√
3/2

−
√
3/2 1/2

)
. Then V is simple (over R) but V ⊗R V is not

simple. However, over C, it is true that simple⊗ simple is simple. For finite groups, this is an easy
application of character theory; it is actually true for all groups.

For groups whose representations are not all direct sums of simples, not every rep breaks up as
a direct sum of tensor products. For example, let G be the additive group Z and let G×G act on
C2 by ρ(j, k) =

(
1 j+k
0 1

)
. This representation cannot be written as a nontrivial direct sum; and it

is not the tensor product of a G-rep with another G-rep.

2. Finding the irrep Vλ (from last class)

Let λ be a partition of n. We want to construct Vλ, the GL(n) irrep with character sλ. Let
N = |λ|, and let V = Cn. Define the two GL(n)-representations

H =
⊗
k

Symλk V and E =
⊗
k

∧(λT )kV

which have characters χH = hλ and χE = eλT , respectively. Recall that

hλ = sλ +
∑
µ≺λ

κλµsµ and eλT = sλ +
∑
µ�λ

κλTµT sµ

1
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so the equality 〈hλ, eλT 〉 comes from the sλ term. It follows that the only GL(n) irrep that H and
E have in common is a single copy of Vλ. Any non-zero GL(n)-equivariant map E → H or H → E
is actually a map from one copy of Vλ to the other copy of Vλ. Our goal is therefore to construct
such a map.

3. a GL(n)-equivariant map E → H

We will construct a non-zero GL(V )-equivariant map E → H. The image of this map will be
the copy of Vλ in H.

Let’s think of Symk V and
∧kV concretely. Note that Symk V is can be thought of as either a

subspace or a quotient of V ⊗k. Viewing Symk V as the subspace of V ⊗k of Sk-invariant tensors,
there is the inclusion

Symk V → V ⊗k

v1 · · · vk 7→
1

k!

∑
w∈Sk

vw(1) ⊗ · · · ⊗ vw(k).

(Notation: We’re writing elements of Symk V as monomials. This is not standardized.) Viewing
Symk V as a quotient of V ⊗n, we have the projection map

V ⊗k → Symk V

v1 ⊗ · · · ⊗ vk 7→ v1 · · · vk

which equates different permutations of a tensor. Similarly for
∧kV , there are maps

∧kV → V ⊗n

and V ⊗n →
∧kV defined by

v1 ∧ · · · ∧ vk 7→
1

k!

∑
w∈Sk

(−1)wvw(1) ⊗ · · · ⊗ vw(k)

v1 ⊗ · · · ⊗ vk 7→ v1 ∧ · · · ∧ vk

so that
∧kV can also be viewed as either a subspace or a quotient of V ⊗n. (Note: (−1)w is the

parity of the permutation.)
The map E → H is constructed out of the two parts E → V ⊗N → H, inclusion and projection.

The cells of a Young tableau of shape λ index the components of V ⊗N (recall that N = |λ|).
The columns index the components of E, and the rows index the components of H. For the map
E → V ⊗N → H, include from E into V ⊗N by column, and project from V ⊗N to H by row.

We give this construction by example. Consider the following partition:

λ = (4, 2, 1) λT = (3, 2, 1, 1)
1 2 3 4
5 6
7

The leftmost column of the tableau corresponds with
∧3V , the first component of E. It maps to

the first, fifth, and seventh components of V ⊗N , which in turn project to Sym4 V , Sym2 V , and V ,
respectively (the first, second, and third rows). Or we can look at the following picture:∧3V ⊗

∧2V ⊗ V ⊗ V

V ⊗ V ⊗ V ⊗ V ⊗ V ⊗ V ⊗ V

Sym4 V ⊗ Sym2 V ⊗ V
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We need this ‘twisting’ to get non-zero map.
For a smaller example, consider

λ = (2, 1) λT = (2, 1) 1 2
3

and the picture ∧2V ⊗ V

V ⊗ V ⊗ V

Sym2 V ⊗ V

which is simple enough that we will write the map explicitly. The component of the map from
∧2V

to V ⊗ V is u ∧ v 7→ 1
2(u⊗ v − v ⊗ u). On an arbitrary pure tensor in

∧2V ⊗ V , the whole map is∧2V ⊗ V → V ⊗ V ⊗ V → Sym2 V ⊗ V
(u ∧ v)⊗ w 7→ 1

2(u⊗ w ⊗ v − v ⊗ w ⊗ u) 7→ 1
2((uw)⊗ v − (vw)⊗ u).

One special case is

(u ∧ v)⊗ w + (v ∧ w)⊗ u+ (w ∧ u)⊗ v 7→ 0

(which is suggestive of the Jacobi identity).
Since E → H is a GL(V )-equivariant map, it commutes with torus action. In weight x2ixj , E

has one eigenvector (ei∧ej)⊗ei, and its image is non-zero. In weight xixjxk, E has 3 eigenvectors,
(ei ∧ ej) ⊗ ek, (ej ∧ ek) ⊗ ei, (ek ∧ ei) ⊗ ej and their images span a 2 dimensional subspace of H.
The corresponding Schur function is

s21(x) =
∑

x2ixj + 2
∑

xixjxk.

4. Other approaches (and the young symmetrizer)

• We could map H → E instead.
• We could try to map both E and H to V ⊗N and intersect their images. But this might not

work. This is because even though both E and H have a copy of Vλ, their images in V ⊗N

might be isomorphic, but not the same, in which case their images would not intersect.
• We could think of H and E as subspaces of V ⊗N . Let aλ be projection onto H ⊂ V ⊗N , and
bλ be projection onto E ⊂ V ⊗N . Look at the image of aλbλ. (Note the image of bλaλ will
be isomorphic to aλbλ but not equal, unless E did meet H. This is the same issue as in the
previous bullet point.)

We’ll do the third option. What is aλ? It is

aλ : V ⊗N → H → V ⊗N ,

the composition of projection and inclusion. It projects from V ⊗N to a copy of H inside V ⊗N .
Explicitly, the map is

aλ(v1 ⊗ · · · ⊗ vN ) =
1

λ1! · · ·λk!
∑

w∈Sλ1×···×Sλk

Vw(1) ⊗ · · · ⊗ Vw(N)

with a sum over permutations w ∈ SN that preserve the rows of the λ-tableau. For example, with
λ = (2, 1) the map is given by

a21 : v1 ⊗ v2 ⊗ v3 7→ (v1v2)⊗ v3 7→ 1
2(v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3).
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Similarly, bλ is

bλ : V ⊗N → E → V ⊗N

bλ(v1 ⊗ · · · ⊗ vN ) =
1

(λT )1! · · · (λT )`!

∑
w

(−1)w Vw(1) ⊗ · · · ⊗ Vw(N)

with a sum over permutations w ∈ SN that preserve the columns of the λ-tableau, so that bλ
projects from V ⊗N to a copy of E inside V ⊗N . For example,

b21 : v1 ⊗ v2 ⊗ v3 7→ (v1 ∧ v3)⊗ v2 7→ 1
2(v1 ⊗ v2 ⊗ v3 − v3 ⊗ v2 ⊗ v1)

where we can see same ‘twisting’ that we had in the earlier construction.
The composition aλbλ of both projections is called the Young symmetrizer , and is written cλ.

We can think of Vλ as the image of cλ in V ⊗N .

5. functoriality

For any partition λ, we claim that

V 7→ Vλ

is a functor (it is called the Schur Functor Sλ).
We first want to show that

(cλ)2 = kλcλ

for some constant kλ, so that cλ is almost an idempotent.
Think of Vλ as a subset of V ⊗N . Write cλ as a composition of projection and inclusion

cλ : V ⊗N
π→ Vλ

i→ V ⊗N .

The map

Vλ
i→ V ⊗N

π→ Vλ

is between irreducible representations, and by Schur’s lemma

π ◦ i = kλ Id

for some constant kλ. Then

(cλ)2 = (i ◦ π) ◦ (i ◦ π) = i ◦ (π ◦ i) ◦ π = kλ(i ◦ π) = kλcλ

as desired. (Because i is inclusion, the constant kλ ‘belongs’ to π.)
This constant kλ does not depend on V . Indeed, we can think about aλ, bλ, and cλ as elements

of C[Sn], e.g.

aλ =
1

λ1! · · ·λk!

 ∑
w∈Sλ1×···×Sλk

w

 ∈ C[Sn]

so that the computation (cλ)2 = (aλbλ)2 is independent of the choice of V .
Now we show functoriality. Any linear map α : U → V lifts to a map Uλ → Vλ.

Uλ U⊗N

Vλ V ⊗N

i

α⊗N

1
kλ
π
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Let β : V →W be another map, and consider the composition Uλ → Vλ →Wλ.

Uλ U⊗N

Vλ V ⊗N

V ⊗N

Wλ W⊗N

i

α⊗N

i

1
kλ
π

β⊗N

1
kλ
π

=⇒

Uλ U⊗N

V ⊗N

V ⊗N

Wλ W⊗N

i

α⊗N

1
kλ
cλ

β⊗N

1
kλ
π

=⇒

Uλ U⊗N

V ⊗N

W⊗N

Wλ W⊗N

i

α⊗N

β⊗N

1
kλ
cλ

1
kλ
π

We’ve made ‘cλ commute with β’. Also 1
kλ
π ◦ 1

kλ
cλ = 1

kλ
π, so

=⇒

Uλ U⊗N

V ⊗N

Wλ W⊗N

i

α⊗N

β⊗N

1
kλ
π

=⇒
Uλ U⊗N

Wλ W⊗N

i

(β ◦ α)⊗N

1
kλ
π

and we have functoriality.


