
THE PERFECT MATCHING BASIS FOR SL(2)-INVARIANTS

CHRIS FRASER

A reference for today’s talk is Greg Kuperberg’s Spiders for Rank 2 Lie Algebras, available here:

http://arxiv.org/abs/q-alg/9712003.

Today we’ll begin discussing webs, spiders etc. These provide an excellent tool for thinking about
(V ⊗2n)SLn in low dimensions. People have still not satisfactorily extended these things to higher
dimensions. For example, Kuperberg’s paper discusses the rank 2, SL3 case. In todays talk, we’ll
do the SL2 case.

Let V ∼= C2 be the defining representation of GL2. Our goal will be to find a “nice” basis for

(V ⊗2n)SL2 ,

the SL2 invariants of V ⊗2n.
Equivalently, these are the homomorphisms

HomSL2(V ⊗n, V ⊗n).

(Recall from the previous lecture that since dimV = 2, we have that V ∨ = det−1⊗V = V as
GL2(V )-reps, and hence V ∨ = V as SL2(V )-reps. So we are not being very careful about duals in
this lecture).

We need to specify what we mean for a basis to be nice. A good starting point is that the
basis exhibits LOTS OF SYMMETRY. The representation theory of (V ⊗2n)SL2 should carry with
it a decent amount of symmetry, e.g. perhaps from permuting tensor factors (v ⊗ w 7→ w ⊗ v).
We already know our space has a basis indexed by SYT of shape (n, n), but there aren’t a lot of
obvious operations we can perform on such tableaux to reflect the symmetries of our problem. One
operation we do have was mentioned last class: we reverse the relative sizes of the entries, and then
rotate the diagram 180 degrees. This symmetry sends

1 2 4
3 5 6 7→

6 5 3
4 2 1 7→

1 2 4
3 5 6

and
1 2 5
3 4 6 7→

6 5 2
4 2 1 7→

1 3 4
2 5 6 .

However, this is the only obvious symmetry we have lying in front of us. It is true that there is
another operation on SYT called promotion. This is a little more involved and David will discuss
it later. For now, we’re not going to talk about it.

Question from the field: Can you remind me why the SYT of shape (n, n) are a basis.
Answer: Think of (V ⊗2n)SL2 as the component of C[xij ]

SL2 , 1 ≤ i ≤ 2, 1 ≤ j ≤ 2n of degree 1 in
each column (with each copy of V representing a column). The (First) Fundamental Theorem of
Invariant Theory for SL2 says that such invariants are generated by all 2× 2 determinants. Recall
that the GL2n-rep V(n,n)(2n) is spanned by all n-fold products of 2 × 2 top-justified determinants
in C[xij ], 1 ≤ i, j ≤ 2n, so it actually lands in C[xij ], 1 ≤ i ≤ 2, 1 ≤ j ≤ 2n. Our space of SL2

invariants is therefore just the component of V(n,n)(2n) of degree 1 in each column . This GL2n-
rep has a basis of semistandard Young tableaux of shape (n, n), and if i appears k times in the
SSYT, the corresponding element in V(n,n)(2n) will be of degree k in the ith column. Therefore,
the component of V(n,n)(2n) of degree 1 in each column corresponds to SSYT where each entry
1, 2, . . . , 2n is used exactly once, which are standard Young tableaux.
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The “noncrossing-matching basis” we are about to discuss is more symmetric than the SYT-
basis. HOWEVER it is too much to ask for our basis to allow symmetries corresponding to
arbitrary permutations of tensor factors. There is a good justification of this: if we want our
basis to extend to the setting of quantum group represention theory, then arbitrary permutations
of tensor factors are no longer SL2-equivariant. On the other hand, we might want to restrict
ourselves to merely cyclic permutations of tensor factors, for example x ⊗ y ⊗ z 7→ y ⊗ z ⊗ x. It
turns out these permutations do remain SL2-equivariant, and we would like our basis to exhibit
this type of symmetry.

Added by David Another reason why it is unreasonable to hope that our basis has symmetries
for arbitrary permutations of tensor factors is that the action of S2n on the invariants is usually
NOT a permutation action (nor some trivial modification, such as permutation tensor sign). For

example, when n = 3, the representation of S6 is the Specht module Sp( ) which we will meet
next week, and this simply is not a permutation representation.

1. Non-Crossing Matchings

On Problem Set 7, we will work out a bijection between SYT of shape (n, n) and non-crossing
matchings. Recall, a Non-crossing Matching on 2n elements is a way to pair them so that no
two matchings cross. The number of noncrossing matchings is the nth Catalan number, 1

n+1

(
2n
n

)
.

Here’s an example of a noncrossing matching on 6 elements, which we will use as a running example
for the rest of today.

(1)

2

1

5

4 3

6

.

Here is a second example of a matching, but it is not noncrossing, because the line between 1
and 3 crosses the line between 6 and 2.

2

6 1

3

5

4 .

We will not consider such matchings.
Our bijection leads us to a new idea: is it possible to make the non-crossing matchings into a

basis for (V ⊗2n)SL2 in a “good” way. In particular, note that these noncrossing matchings exhibit
the cyclic symmetry we were seeking above (since rotating a matching doesn’t change whether or
not it is a “crossing” matching).

Some conventions about matchings:

• We will call these noncrossing matchings “webs”; it’s a good short word to replace non-
crossing matching, and we will use the same word later, when we move up to rank 2.
• We will often draw matchings on a horizontal line, rather than on a circle (nothing is lost

in doing this). The matching in (1) is drawn below.

• • • • • •

• Let R denote counterclockwise rotation of the matching. For example, the pairing in our
running example has the pairs {1, 2}{3, 6}{4, 5} and rotated pairing has pairs {6, 1}, {2, 5}, {3, 4}.
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The horizontal diagram of the rotated pair is given by

• • • • • •

• We have a notion of join of two noncrossing matchings, which is just concatenation. For ex-
ample, our running example is the join of the matching {1, 2} with the matching {1, 4}{2, 3}.
If our matchings have size 2n and 2m respectively, the result will be a matching of size
2(n + m). Ultimately, we’d like the join operation to correspond to taking ⊗ of a basis

element from V ⊗2n with V ⊗2m, which lands in V ⊗2(n+m).
• We also have a notion of stitching . Given a noncrossing matching, we can choose two

adjacent numbers and “identify” them, thereby obtaining a matching on two fewer elements.
For example, stitching the numbers 2 and 3 together in our running example gives the
noncrossing matching given by {1, 4}, {2, 3}. The picture is

• • • • • • 2,3 stitching−−−−−−−→ • • • • .

We only allow ourselves to stitch adjacent numbers, since otherwise we might not preserve
the property of being non-crossing. In terms of our basis, we would like this stitching
operation to coincide with contraction, which comes from

V × V ∼= V × V ∨ → C.

Note that if we identify the numbers 4 and 5 in our running example, we get a loop at
the identified point. This should represent a scalar. We will see what happens in this case
later on.

An aside: What is the isomorphism V ∼= V ∨. Ie, if v∨ ∈ V ∨ what v does v∨ correspond to?
Our answer is that v is the vector such that 〈v∨, •〉 = det(•, v), where the • symbol is supposed to
represent the place you stick in vectors. Explicitly, suppose e1, e2 are a basis for V and e1, e2 are
the corresponding dual basis. Then e1 7→ −e2 and e2 7→ e1. This is a particular case of the Hodge
star map, which you may have heard of elsewhere.

2. Constructing the noncrossing matching basis

We want maps

ϕ2n : {Webs on 2n elts} → (V ⊗2n)SL2

respecting the operations on matchings we defined in the previous section. Explicitly:

(1) Joining webs should correspond to ⊗. That is

ϕ2(n+m)(W1,W2) = ϕ2n(W1)⊗ ϕ2m(W2),

for any two noncrossing matchings W1,W2.
(2) Rotations of webs should correspond to the cyclic permuation of tensor factors, with a

minus sign. The minus sign is unfortunate, but we’ll see in a second there’s not any way of
getting around it. We will abuse notation and use R for both counterclockwise rotation of
webs and cyclic permutation left of tensor factors; hence we want

ϕ2n(R(W )) = −R(ϕ2n(W )).

(3) Stitches of webs should correspond to contraction of the appropriate tensor factors.
(4) Once we take spans, ϕ2n should extend to an isomorphism between the formal complex

span of the webs, and (V ⊗2n)SL2 .
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From now on, we’ll drop subscripts on ϕ. The properties above will nearly force our construction.
Note that (V ⊗2)SL2 is one-dimensional, spanned by e1 ⊗ e2 − e2 ⊗ e1. This corresponds to the

determinant map. We will denote this element of (V ⊗2)SL2 by a.
There is only one web on two elements, so we may as well make ϕ send this web to a. Rotating

this web does nothing, but rotating a gives −a. There isn’t really a way around this, and it justifies
the minus sign we had in property (2) above.

Now notice that every web is uniquely constructed from the web on two points by taking joins
and by applying rotations in a certain way. Given a web W on 2n vertices where n ≥ 2, if 1 is not
paired with 2n (so if there is no single arc going over all of the other arcs in the picture), then the
web is already a join of two smaller webs. Otherwise, one sees that

R−1(W )

is the join of the web on two vertices with a smaller web on 2(n− 1) vertices. For example,

• • • • • • • • = R


• • • • • • • •

 .

Thus, properties 1) and 2) above, along with our choice that ϕ( • • ) = a, provides a definition
ϕ for every web: ϕ sends joins to ⊗, and satisfies

R( • • , ∗∗) 7→ϕ −R(a⊗ ϕ(∗∗)).
where ∗∗ indicates a web whose image under φ we already know.

Since restricting ourselves to this limited use of R allows us to build each web in a unique way,
this gives a well-defined map φ. Next class we’ll prove that this definition behaves well with respect
to multiple rotations, and with respect to stitching.

Right now we’ll check that stitching behaves well in one example, using the explicit formula for
contraction we found in the “aside” above.

Namely, we have specified that

ϕ( • •• •• • ) = a⊗ a.
Stitching together along 2 and 3 gives us the unique web on two points (which is sent to a by ϕ).
For this to work out, we want to make sure that contracting a⊗a along the second and third tensor
factor gives us a. Note that

a⊗ a = e1 ⊗ e2 ⊗ e1 ⊗ e2 − e1 ⊗ e2 ⊗ e2 ⊗ e1 − e2 ⊗ e1 ⊗ e1 ⊗ e2 + e2 ⊗ e1 ⊗ e2 ⊗ e1
By the aside, e2 ⊗ e1 7→ 〈e2, e2〉 = 1. Similarly, one checks that e2 ⊗ e2 contracts to 0, e1 ⊗ e1

contracts to 0, and e1 ⊗ e2 contracts to −1, via

e1 ⊗ e2 7→ 〈−e1, e1〉 = −1.

Hence, the contraction of a⊗ a in the second and third tensor factors is

e1 ⊗ e2 − e2 ⊗ e1,
which is a, as desired.

Kevin adds: We’re also ready to see what scalar the loop corresponds to. This small bit got lost
in time and space between this lecture and the next, but it’s an easy calculation using stitching
(where I will denote stitching and contraction by S1):

ϕ(◦) = ϕ(S1( • • )) = S1(e1 ⊗ e2 − e2 ⊗ e1) = 〈−e1, e1〉 − 〈e2, e2〉 = −2.

Hence we see that a loop should be the scalar −2.


