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We continue our study of web diagrams and non-crossing matchings.

Recall: We were in the process of showing that the non-crossing matchings are a basis for
(V ⊗2n)SL2 , where V = C2 is the defining representation for GL2(C).

Important notation:

• Recall that is the web/non-crossing matching with two elements. We will write w to

denote a web w enclosed by .

• If w is a web, let R(w) be the web obtained by rotating the picture counterclockwise one
step.
• If v is a pure tensor, let R(v) be the pure tensor obtained by rotating the entries “left”. For

example, R(x⊗ y ⊗ z) = y ⊗ z ⊗ x.
• If w is a web and i an index, Si(w) is the web obtained by “stitching” i to i + 1.
• If v = · · · ⊗ vi ⊗ vi+1 ⊗ · · · is a pure tensor (and i an index), then Si(v) is the pure tensor

of length 2 shorter, obtained by contracting vi ⊗ vi+1 to the scalar det(vi+1, vi).

1. The main theorem

We prove the following.

Theorem 1. Let W2n be the vector space on the set of webs on 2n elements. Then there is a
(family of) isomorphism(s)

ϕ : W2n → (V ⊗2n)SL2 ,

with the following properties:

• (Rotation) For any web w, ϕ(R(w)) = −R(ϕ(w)).
• (Stitching/Contraction) For any web w and i, ϕ(Si(w)) = Si(ϕ(w)).
• (Concatenation/Multiplication) For any webs w1, w2, ϕ(w1w2) = ϕ(w1)⊗ ϕ(w2).

Remark. Last time, we showed that any web can be built uniquely out of copies of the basic
web by composing joins and the specific rotation R( ·). This gives a “standard” way to

build a web, so we do have a well-defined map ϕ. We still need to show that ϕ behaves correctly
with arbitrary joins, rotations and contractions.

Proof. First of all, joins work by construction. For rotations, we need to show the identity

ϕ(R( w1 w2)) = −R(ϕ( w1 w2)).

We consider the left-hand side: after applying the rotation, this is just

ϕ(w1 w2 ) = ϕ(w1)⊗ ϕ( w2 )

= ϕ(w1)⊗ ϕ(R( w2))

= ϕ(w1)⊗−R(a⊗ ϕ(w2)),
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where a = ϕ( ) = e1 ⊗ e2 − e2 ⊗ e1 is from our initial definition of ϕ. We expand this and
rearrange:

= ϕ(w1)⊗−R
(
e1 ⊗ e2 ⊗ ϕ(w2)− e2 ⊗ e1 ⊗ ϕ(w2)

)
= −ϕ(w1)⊗

(
e2 ⊗ ϕ(w2)⊗ e1 − e1 ⊗ ϕ(w2)⊗ e2

)
= −R

(
e1 ⊗ ϕ(w1)⊗ e2 ⊗ ϕ(w2)− e2 ⊗ ϕ(w1)⊗ e1 ⊗ ϕ(w2)

)
= −R

(
R
(
e2 ⊗ e1 ⊗ ϕ(w1)− e1 ⊗ e2 ⊗ ϕ(w1)

)
⊗ ϕ(w2)

)
= R

(
R(a⊗ ϕ(w1))⊗ ϕ(w2)

)
= −R

(
ϕ(R( w1)w2)

)
= −R(ϕ( w1 w2).

This confirms that rotations work as intended. For stitchings, we omit the proof, though the com-
putation is similar. (It’s easier to start with the right hand side, Si(ϕ(w)), since it’s easier to
transform the larger tensor into a smaller one by contracting two tensor factors into a scalar.)

We show that ϕ is an isomorphism. We know the dimensions are correct (by a homework
problem), so we need only check injectivity or surjectivity. We’ll show surjectivity. We think of
(V ⊗2n)SL2 as HomSL2(V ⊗2n,C), which in turn we think of as SL2-invariant multilinear functions
V × · · · × V → C.

We have a spanning set

(v1, . . . , vn) 7→ det(vw(1),w(2)) · · · det(vw(2n−1),w(2n)), w ∈ S2n.

It suffices to show that all of these are in ϕ(W2n). In this language, for example,

1

2

34

5

6

corresponds to the map

(v1, . . . , v6) 7→ det(v1, v2) det(v3, v6) det(v4, v5) = ∆12∆36∆45.

If we allow crossings, then we certainly span the whole space. So, it suffices to express crossings
like

1

23

4

in terms of webs. To do this, we expand using the Plücker relation,

∆13∆24 = ∆14∆23 + ∆12∆34,

which says, in terms of web diagrams,

1

23

4 1

23

4 1

23

4
= +

This completes the proof. �
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2. Generalizing to SL3

We can still use webs to get a basis for (V ⊗3n)SL3 . Various things have changed, though (and
in fact it’s not known how to find a web basis if we instead try SL4). In particular:

• The vector space V = C3 is now the defining representation of SL3 (and GL3),
• It is no longer self-dual(!): V 6∼= V ∨. However,

• We do have V ∨ ∼=
∧2 V . Indeed, for characters,

x−11 + x−12 + x−13 = (x1x2x3)
−1(x1x2 + x1x3 + x2x3),

which shows that

V ∨ ∼= (det)−1 ⊗
∧2

V as GL3-representations,

hence V ∨ ∼=
∧2 V for SL3-representations. Explicitly, we have the correspondence∧2

V 3 v1 ∧ v2 ←→ det(v1, v2, · ) ∈ V ∨.

As above, we’ll think of (V ⊗3n)SL3 as the vector space of multilinear maps

V × · · · × V︸ ︷︷ ︸
3n

→ C.

We have a basis consisting of 3× n standard Young tableaux:

1 2 4
3 5 7
6 8 9

corresponds to ∆136∆258∆479. This is good, but does not have cyclic symmetry: if we rotated
1→ 9→ 8→ · · · , we would end up with

1 2 3
4 5 6
7 9 8

which is no longer a standard Young tableau. That said, we can draw our SYT as a “tripod
diagram”:

6 5 4

7

8

9

1

2

3

which has some rotational symmetry. There are various problems with this approach, however. For
one thing, arbitrary “tripod diagrams” are too numerous, and don’t correspond nicely to SYTs.
Moreover, the “totally noncrossing” versions of these tripod pictures are too few to span the whole
space (and they still don’t correspond neatly to SYTs). For example, there are 10 “tripod diagrams”
on 6 points, 5 SYTs of shape (2, 2, 2), and only 3 “totally noncrossing tripod diagrams”.

2.1. Tensor Diagrams. One solution is to use tensor diagrams, defined as follows.

Definition. A tensor diagram for (V ⊗3n)SL3 is a directed graph in a disk, such that

• There are 3n boundary sources of degree 1,
• All interior vertices are either sources or sinks, and have degree 3.

For example,
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6

5

4

1

2

3

corresponds to the product of determinants ∆234∆156. However, more complicated diagrams may
not clearly correspond to anything ‘nice’ (or at least anything that we already have a name for):

5

4

2

1

8

7

6

3

9

Next class, we’ll describe how these correspond to invariants, and we’ll see that these give a good
description for SL3 invariants.


