NOTES FOR OCT 05

STEFAN FROEHLICH

Today we will prove a weak version of the Peter-Weyl Theorem.

1. NOTATION

Through out these notes, G will be a topological group, $C^0(G) = \{\text{continuous functions } G \to \mathbb{C}\},\$ and $G \times G$ acts on $\phi \in C^0(G)$ by $(g_1, g_2) \cdot \phi(h) = \phi(g_1^{-1}hg_2)$

Last time we begin the proof of the following proposition: **Proposition**: For $\phi \in C^0(G)$, the following are equivalent

- (1) $\operatorname{Span}(g_1, g_2) \cdot \phi$ is finite dimensional
- (1') $\text{Span}(q, 1) \cdot \phi$ is finite dimensional
- (1'') Span $(1, g) \cdot \phi$ is finite dimensional
- (2) $\phi = \lambda(\rho_V(g))$ for some finite dimensional continuous *G*-representation *V* and some λ : End(*V*) $\rightarrow \mathbb{C}$

Functions $\phi \in C^0(G)$ satisfying these properties are called matrix coefficients.

From last time, we have that $(2) \Rightarrow (1) \Rightarrow (1'), (1'')$. All that is left is to prove $(1'') \Rightarrow (2)$, and $(1') \Rightarrow (2)$ will follow analogously.

Set $V = \text{Span}(1, g) \cdot \phi = \text{Span}\{h \mapsto \phi(hg)\}$. We need to check that V is a continuous G representation. Let ϕ_1, \dots, ϕ_n be a basis of V. For $h \in G$, let ϵ_h be evaluation at h (i.e. ϵ_h is the map $\phi \mapsto \phi(h)$). As h runs over G, the ϵ_h span V^{\vee} .

Let $\epsilon_{h_1}, \dots, \epsilon_{h_n}$ be a basis of V^{\vee} . The matrix $(\epsilon_{h_i}(\phi_j))$ is invertible, since we obtained it by pairing a basis for V against a basis for V^{\vee} . For $\psi \in V^{\vee}$, we have

$$\psi = (\phi_1 \cdots \phi_n) (\epsilon_{h_i}(\phi_j))^{-1} \begin{pmatrix} \psi(h_1) \\ \vdots \\ \psi(h_n) \end{pmatrix}$$

 \mathbf{SO}

$$\rho(g) \cdot \psi = (\phi_1 \cdots \phi_n) (\epsilon_{h_i}(\phi_j))^{-1} \begin{pmatrix} \psi(h_1g) \\ \vdots \\ \psi(h_ng) \end{pmatrix},$$

which is continuous in g.

So we have a continuous representation V. Let $\lambda : \operatorname{End}(V) \to \mathbb{C}$ be the map $\alpha \mapsto \epsilon_{\operatorname{Id}}(\alpha(\phi))$. Then $\lambda(\rho_V(g)) = \phi(g)$, so λ is the desired map.

2. The ring of matrix coefficients

We define $\mathcal{O}(G)$, the ring of matrix coefficients, to be $\{\phi \in C^0(G) : \phi \text{ is a matrix coefficient of } V\}$. This forms a ring since if $\phi, \psi \in \mathcal{O}(G)$, then by the proposition $(G \times G) \cdot \phi = \text{Span}(\phi_1, \dots, \phi_m)$ and $(G \times G) \cdot \psi = \text{Span}(\psi_1, \dots, \psi_n)$ for some $\phi_1, \dots, \phi_m, \psi_1, \dots, \psi_n \in C^0(G)$. Then $(G \times G) \cdot (\phi + \psi) \subset \text{Span}(\phi_1, \dots, \phi_m, \psi_1, \dots, \psi_n)$ and $(G \times G) \cdot (\phi \psi) \subset \text{Span}(\phi_i \psi_j)$ so both $\phi + \psi$ and $\phi \psi$ are matrix coefficients by the proposition.

3. The Weak Peter Weyl Theorem

Let G be a compact group. Theorem:

$$\mathcal{O}(G) \cong \bigoplus \operatorname{End}(V)^{\vee}$$
 as $G \times G$ representations

Here the direct sum is over all isomorphism classes of irreducible representations of G, each listed once. In addition, $\operatorname{End}(V)^{\vee}$ is orthogonal to $\operatorname{End}(W)^{\vee}$ under $\langle \phi, \psi \rangle = \int \phi(g) \overline{\psi(g)} dg$

Lemma: If V and W are simple G and H representations then $V \otimes W$ is a simple $G \times H$ representation.

We will prove this for when G and H are compact, though this is true for any G and H. We have

$$\int_{G \times H} \chi_{V \otimes W}(g,h) \overline{\chi_{V \otimes W}(g,h)} d(g,h) = \int_{G} \chi_{V}(g) \overline{\chi_{V}(g)} dg \int_{G} \chi_{W}(h) \overline{\chi_{W}(h)} dh = 1 \cdot 1 = 1,$$

so $V \otimes W$ is simple.

4. PROOF OF THE WEAK PETER-WEYL THEOREM

We have a natural map \bigoplus End $(V)^{\vee} \to \mathcal{O}(G)$. We want to show that this is an isomorphism.

Injectivity: This is a map of $G \times G$ representations, so the kernel is a $G \times G$ subrepresentation. This means that the kernel must be of the form $\bigoplus_{V \in S} \operatorname{End}(V)^{\vee}$. $\operatorname{End}(V)^{\vee} \to \mathcal{O}(G)$ is not the zero

map for any irreducible V though, so the kernel must be 0.

Surjectivity: Let $\phi = \lambda(\rho_W(g))$ for some $W \cong \bigoplus V_i$. End $(W) = \bigoplus_{i,j} \operatorname{Hom}(V_i, V_j)$ so $\lambda = \sum \lambda_{ij}$

for some λ_{ij} : Hom $(V_i, V_j) \to \mathbb{C}$. But $\rho_W(G) \subset \bigoplus \operatorname{End}(V_i)$ so $\lambda(\rho_W(g)) = \lambda'(\rho_W(g))$ where $\lambda' = \sum \lambda_{ii}$. For V an irreducible representation, let $\lambda_V = \sum_{V_i \cong V} \lambda_{ii}$, so $\lambda'(\rho_W(g)) = \sum_V \lambda_V(\rho_V(g))$,

which is in the image of $\bigoplus \operatorname{End}(V)^{\vee}$.

Orthogonality This was done pretty badly in class; see the next lecture's notes for a better presentation. (Statement added by David.)