
NOTES FOR OCTOBER 8

RACHEL KARPMAN

1. Matrix coefficients are orthogonal

Recall from last time: we let G be a compact group, and let O(G) the ring of matrix coefficients.
Then the Weak Peter-Weyl Theorem says

O(G) =
⊕

V an isomorphism class of irreps

V ∨ ⊗ V

as a G×G representation, and the decomposition is orthogonal.
Remember how the embedding of V ∨⊗V into O(G) works. We have V ∨⊗V ∼= End(V )∨. Given

a linear functional λ : End(V )→ C, the isomorphism carries λ to the function λ(ρV (g)) on G. We
still need to prove orthogonality.

Let V,W be nonisomorphic simples, and let λ ∈ End(V )∨ and µ ∈ End(W )∨. We want to
compute ∫

G
λ(ρV (g))µ(ρW (g))dg

The action of G on W preserves a positive definite Hermitian form, so we can choose bases where
the action of W is unitary. That is,

ρW (g)) = ρW (g)−T = ρW∨(g)

using the dual coordinates on W∨. So we can rewrite the above expression as∫
G
λ(ρV (g))µ′(ρW∨(g))dg =

∫
G

(λ⊗ µ′)(ρV⊗W∨(g))dg = (λ⊗ µ′)
∫
G
ρV⊗W∨(g)dg

where λ⊗ µ′ ∈ End(V ⊗W∨)∨ and ρV⊗W∨(g) ∈ End(V ⊗W∨).
Since V and W are non-isomorphic simples, we have

(V ⊗W∨)G = Hom(W,V )G = HomG(W,V ) = 0

and so

(λ⊗ µ′)
∫
G
ρV⊗W∨(g)dg = (λ⊗ µ′)(0) = 0

This completes the proof.

2. An aside

Question from the floor: Is it obvious that (U ⊗V )G = (V ⊗U)G? Can you talk about more
about group actions on tensor products?

Sure! We have U ⊗ V ∼= V ⊗ U as G-representations.
The diagonal map gives an embedding of G into G×G, and we have

G ↪→ G×G � U ⊗ V

End(V ) has a natural bilinear form 〈A,B〉 = Tr(AB). This gives a natural isomorphism
End(V ) → End(V )∨. This is not an isomorphism of G × G representations since 〈 , 〉 is not
G-invariant.
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3. Consequences of Peter-Weyl

Consequence 1: If W is a finite dimensional G×G subrepresentation of C0(G), then

W ∼=
⊕
V ∈S

V ∨ ⊗ V

for some set S of nonisomorphic simples.
Consequence 2: (Maschke’s Theorem) If V1, V2, . . . , Vk are pairwise isomorphic simples, then

the image of G spans

End(V1)⊕ End(V2)⊕ · · · ⊕ End(Vk)

Proof: Suppose λ : ⊕End(V ) → C vanishes on the image of G. Then λ =
∑

i λi, where
λi : End(Vi) → C. So λi(ρVi(g)) is in O(G). But each λi(ρVi(g)) lies in a different summand, and
End(Vi) injects into O(G). Hence all the λi are 0, a contradiction.

Consequence 3: Let’s think about the diagonal G inside G×G.

O(G)G = {f ∈ O(G) such that f(h) = f(g−1hg) for all g ∈ G}
= {class functions in O(G)}

Now O(G) is a direct sum of submodules V ∨ ⊗ V for V simple, and

(V ⊗ V ∨)G ∼= HomG(V, V ) = C · Id

In O(G), the function is Tr(ρV (g)) = χV (g). So the characters are an orthogonal basis for the class
function in O(G).

If G is finite, we can think of G as a compact group with the discrete topology. ThenO(G) = CG
and dimCG =

∑
dimV ∨ ⊗ V , so

|G| =
∑
| dim(V )|2

In this case, the space of class functions has as a basis the characters of G. So the number of
conjugacy classes is equal to the number of characters.

4. An aside on conjugacy classes

Question from the floor: Is there a nice bijection between characters and conjugacy classes.
No. In particular, we cannot find a bijection such that the outer automorphisms of G respect the

bijection. See mathoverflow.net/questions/21606 and mathoverflow.net/questions/46900

for counterexamples. (Terminology: The inner automorphisms are those induced by conjugation
by a group element; the group of outer automorphisms is Aut(G)/Inn(G). Inner automorphisms
act trivially on both characters and conjugacy classes, so the outer automorphism group is the
natural thing to ask about.)

Question from the floor: How does this work for Sn?
For n 6= 6, Aut(Sn) = Inn(Sn), so the question is trivial.
For n = 6, there are two ways to embed S5 in S6. In addition to the obvious embedding, we

have an embedding σ of S5 ∼= PGL2(F5) into S6. (Alternate way to describe the embedding of
S5 into S6, not mentioned in class : The group D := (Z/4) n (Z/5) clearly embeds in S5, so S5
acts on S5/D, which has 6 elements.) So S6 � S6/σ(S5) gives a nontrivial outer automorphism,
which swaps the conjugacy classes of (12) and (12)(34)(56). David doesn’t know how it acts on the
representations. See http://arxiv.org/abs/0710.5916 for more on the outer automorphism of
S6.

5. The Full Peter-Weyl Theorem

This section is mostly for cultural enrichment.
We haven’t yet shown that nontrivial finite dimensional representations exist for an arbitrary

compact group. This is hard and requires analysis. The full statement of Peter-Weyl says that
there are lots of finite dimensional representations of compact groups. Before we give a precise
statement, motivation:

Let

G = S1 = R/Z
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The simple representations of G are all θ 7→ e2πikθ, k ∈ C. So

O(G) = SpanCe
2πikθ = {finite sums

∑
ake

2πikθ}

Fourier analysis gives L2(G) = ⊕̂C · e2πikθ. We want to generalize this to all compact groups.
The full statement of the Peter-Weyl Theorem is

L2(G) = ⊕̂V ∨ ⊗ V
If G is a Lie group, f : G→ C is smooth, then f is the absolutely convergent sum of its projections
onto each V ∨ ⊗ V .

See http://terrytao.wordpress.com/2011/01/23/

the-peter-weyl-theorem-and-non-abelian-fourier-analysis-on-compact-groups/ for a pretty
clear proof.

Cautionary sidenote: The Peter-Weyl theorem is not quite as good as the results from Fourier
analysis.

Recall the Gibbs phenomenon from Fourier analysis. The Fourier series of a sufficiently “nice”
function converges away from discontinuities.

Let G = SU(2). Then the elements of G can be written(
a+ bi c+ di
−c+ di a− bi

)
where a2 + b2 + c2 + d2 = 1.

Let f : G→ C be the function

f(g) =

{
1 if a > 0⇔ Tr(g) > 0

−1 if a < 0⇔ Tr(g) < 0

Let a = cos(θ). Then we have
V0 = C, χV0 = 1
V1 = C2, χV1 = eiθ + e−iθ.

Vk = SymkC2, χVk = eikθ + ei(k−2)θ) + · · ·+ e−ikθ.
We would expect to have f(θ) =

∑
ckχk(θ) where ck =

∫
SU(2) f(g)χk(g).

In fact, at g = Id, the sum does not converge, but alternates between 1 − 2/π and 1 + 2/π.
Here is a plot of the sum of the first 20 terms, together with the step function it is supposed to be
approaching; observe that the value at 0 is 0.3619 ≈ 1 − 2/π. However, in an L2 sense, the sum
does converge to f ; the dip at 0 get’s narrower as we add more terms.

So the discontinuity at the equator gets “focused” at the North Pole, even though the f is continu-
ous there. See http://sbseminar.wordpress.com/2011/02/18/a-peter-weyl-counter-example/
for more on this example.


