MATH 665 PROBLEM SET 10: DUE DEC 3

See the course website for homework policy.

This problem set has two sides!

Problem 1 Let V be the standard representation of GL_i . Let $\rho: GL_{i+1} \to GL(W)$ be a representation and let $\sigma: \mathfrak{gl}_{i+1} \to \operatorname{End}(W)$ be the corresponding map of Lie algebras. Define a map $m: V \times W \to W$ by

$$m(v,w) = \sigma \begin{pmatrix} 0 & 0 & \cdots & 0 & v_1 \\ 0 & 0 & \cdots & 0 & v_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & v_i \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix} w.$$

- (a) Show that m is bilinear, so it extends to a map $\tilde{m}: V \otimes W \to W$. Show that \tilde{m} is a map of GL_i representations, where GL_i acts on W by restricting the GL_{i+1} action.
- (b) Decompose W into GL_i isotypic components and let $v \in V$. Suppose that the map $\tilde{m}(v, \cdot)$ from the λ -component to the μ -component is nonzero. Show that $\mu \supset \lambda$ and μ/λ is a single box.
- (c) Let x_T be the Gelfand-Tsetlin basis of $V_{\lambda}(n)$. Show that $\sigma(E_{i(i+1)})x_T$ is in the span of the vectors x_U , where U ranges over vectors obtained by changing a single i of T to an i+1.

Problem 2 Inside the word crystal for \mathfrak{gl}_3 , find and draw the connected components of the words 1, 12, 11, 112 and 121.

Problem 3.(a) Let $w = w_1 w_2 \cdots w_d$ be a word in the alphabet $\{1, 2, \dots, n\}$. Define $\alpha(w)$ to be the word $(n+1-w_d)(n+1-w_{d-1})\cdots(n+1-w_1)$. For example, if n=3, then $\alpha(12331312323113)=12212123131123$. Show that $\alpha(e_k(w))=f_{n-k}(\alpha(w))$ and $\alpha(f_k(w))=e_{n-k}(\alpha(w))$.

- (b) Let $w = w_1 w_2 \cdots w_d$ be a word in the alphabet $\{1, 2, \dots, n\}$. For $i \in \{1, 2, \dots, n\}$, define \bar{i} to be the word $12 \cdots (i-1)(i+1) \cdots n$. Define $\beta(w)$ to be the concatenation $\bar{w}_d \bar{w}_{d-1} \cdots \bar{w}_1$. For example, with n = 3, $\beta(1213) = 12231323$. Show that $\beta(e_k(w)) = f_k(\beta(w))$ and $\beta(f_k(w)) = e_k(\beta(w))$.
- (c) Obviously, $\beta(\beta(w)) \neq w$ (except for n=2). However, show that the component of the word crystal containing w is isomorphic to the component of the word crystal containing $\beta(\beta(w))$.

Problem 4 This problem takes place inside the word crystal for \mathfrak{gl}_2 . For a binary word u, let a(u) be the number of ones in u, let b(u) be the number of twos and let $\ell(u)$ be the length of the string containing u. (Convention check: $\bullet \hookrightarrow \bullet \hookrightarrow \bullet \hookrightarrow \bullet$ has length 3.)

- (a) Let u and v be two binary words and let uv be their concatenation. Show that $(a(uv), b(uv), \ell(uv))$ is determined by $(a(u), b(u), \ell(u))$ and $(a(v), b(v), \ell(v))$.
- (b) Let $(u_0, u_1, \ldots, u_\ell)$ and (v_0, v_1, \ldots, v_m) be strings. Show that the set of concatenations $u_i v_j$ is closed under the crystal operators; draw the graph of how the crystal operators act on this set.

Problem 5 (The RSK correspondence) In this problem, we give a bijective proof of

$$\sum_{\lambda} s_{\lambda}(x_1, x_2, \dots, x_n) s_{\lambda}(y_1, y_2, \dots, y_n) = \prod_{i,j} \frac{1}{1 - x_i y_j}. \quad (*)$$

This proof isn't directly relevant to recent topics, but stay tuned.

Recall the definition of horizontal strips from the Pieri rule. We'll write $\alpha \uparrow \beta$ to mean that β/α is a horizontal strip, and $\alpha \downarrow \beta$ to mean that α/β is a horizontal strip.

(a) Fix partitions α and γ . Give a bijective proof that

$$\sum_{\alpha\uparrow\beta\downarrow\gamma} x^{|\beta/\alpha|} y^{|\beta/\gamma|} = \left(\sum_{\alpha\downarrow\beta'\uparrow\gamma} y^{|\alpha/\beta'|} x^{|\gamma/\beta'|}\right) \left(\sum_{k=0}^{\infty} (xy)^k\right).$$

(b) Show that

$$\begin{split} \sum_{\lambda} s_{\lambda}(x_1, x_2, \dots, x_n) s_{\lambda}(y_1, y_2, \dots, y_n) &= \\ \sum_{\emptyset \uparrow \beta_1 \uparrow \beta_2 \uparrow \dots \uparrow \beta_{n-1} \uparrow \lambda \downarrow \delta_{n-1} \downarrow \dots \downarrow \delta_2 \downarrow \delta_1 \downarrow \emptyset} x_1^{|\beta_1|} x_2^{|\beta_2/\beta_1|} \dots x_n^{|\lambda/\beta_{n-1}|} y_n^{|\lambda/\delta_{n-1}|} \dots y_2^{|\delta_2/\delta_1|} y_1^{|\delta_1|}. \end{split}$$

- (c) Prove the equality (*).
- (d) Describe a weight preserving bijection between ordered pairs (T, U) of SSYT with shape(T) = shape(U) and rectangular arrays of nonnegative integers.

Attribution: I learned this proof from arXiv:1210.7109. This bijection is not hard to relate to the bijection in arXiv:math/0703414; the main result of that paper is that this bijection is RSK.