MATH 665 PROBLEM SET 3: DUE OCT 1

See the course website for homework policy. Most of these problems could also have been assigned the previous week.

Problem 1 Find a simple formula for $s_{(n-1)(n-2)\cdots 321}(x_1, x_2, \dots, x_n)$.

Problem 2 (a) Fix a positive integer d and let $\lambda = (\lambda_1, \ldots, \lambda_d)$. Let $\delta(\lambda, d)$ be $s_{\lambda}(1, 1, \ldots, 1, 0, 0, \ldots)$ where there are d ones and all the other variables are 0. Show that $\delta(\lambda, d)$ is a polynomial in d. Hint: Some definitions of Schur functions make this much easier than others.

(b) Find explicit formulas for $\delta((k), d)$, $\delta(1^k, d)$, $\delta((2, 1), d)$ and $\delta((2, 2), d)$.

(c) A standard Young tableau is an SSYT all of whose entries are distinct. State and prove a relation between $\delta(\lambda, d)$ and the number of standard Young tableau of shape λ .

Problem 3 This problem concerns walks in a graph whose vertices are \mathbb{Z}^2 ; the steps of these walks travel in directions (1,0) and (0,1).

(a) Describe a way of weighting the edges of the graph, so that the weighted sum of paths from (0,0) to (k, n-k) is $e_k(x_1, x_2, \ldots, x_n)$.

(b) Let $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ be a partition. Find a problem about counting paths whose answer is

	$\begin{pmatrix} e_{\lambda_1} \end{pmatrix}$	e_{λ_1+1}	e_{λ_1+2}	• • •	e_{λ_1+n-1}
	e_{λ_2-1}	e_{λ_2}	e_{λ_2+1}	• • •	e_{λ_2+n-2}
det	e_{λ_3-2}	e_{λ_3-1}	e_{λ_3}	• • •	e_{λ_3+n-3}
	÷			·	
	$\langle e_{\lambda_n-n+1} \rangle$	e_{λ_n-n+2}	e_{λ_n-n+3}		e_{λ_n}

where all symmetric polynomials are in x_1, x_2, \ldots, x_n .

(c) Find another of counting noncrossing paths to show that this determinant is equal to $s_{\lambda^T}(x_1, x_2, \ldots, x_n)$. This is called the *dual Jacobi-Trudy indentity*.

Problem 4 The goal of this problem is to sketch another proof of $\prod (1-x_i y_j)^{-1} = \sum s_{\lambda}(x) s_{\lambda}(y)$, in terms of the ratios of alternants formula. More precisely, our goal is to show:

$$\prod_{1 \le i,j \le n} \frac{1}{1 - x_i y_j} = \sum_{\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n} \frac{\det\left(x_i^{\lambda_j + n - j}\right)}{\prod_{1 \le i < j \le n} (x_i - x_j)} \cdot \frac{\det\left(y_i^{\lambda_j + n - j}\right)}{\prod_{1 \le i < j \le n} (y_i - y_j)}.$$
 (*)

(a) Prove Cauchy's determinant identity

$$\det\left(\frac{1}{u_i+v_j}\right)_{1\leq i,j\leq n} = \frac{\prod_{1\leq i< j\leq n}(u_i-u_j)\prod_{1\leq i< j\leq n}(v_i-v_j)}{\prod_{1\leq i,j\leq n}(u_i+v_j)}$$

Hint: Let the determinant be $p(u, v) / \prod (u_i + v_j)$. What can you say about p?

(b) Make a change of variables in part (a) to show:

$$\det\left(\frac{1}{1-x_iy_j}\right)_{1 \le i,j \le n} = \frac{\prod_{1 \le i < j \le n} (x_i - x_j) \prod_{1 \le i < j \le n} (y_i - y_j)}{\prod_{1 \le i,j \le n} (1 - x_iy_j)}$$

(c) Show that

$$\det\left(\frac{1}{1-x_iy_j}\right)_{1\leq i,j\leq n} = \sum_{k_1,k_2,\dots,k_n\geq 0} \det\left(x_i^{k_j}y_j^{k_j}\right).$$

(d) Prove equation (*)