MATH 665 PROBLEM SET 8: DUE NOV 12

See the course website for homework policy.

Problem 1(a) Write down the (semi)-standard bases of $Sp(\lambda)$ for each partition λ of 4.

(b) Write down the matrices for (12), (23) and (34) acting in these bases. (This is a good task for a computer algebra system.)

Problem 2(a) Show that $c_{\lambda\mu}^{\nu} = c_{\lambda}^{\nu} c_{\mu}^{\tau}$, using symmetric polynomials.

(b) Provide an isomorphism between $\operatorname{Hom}_{GL(V)}(V_{\lambda} \otimes V_{\mu}, V_{\nu})$ and $\operatorname{Hom}_{GL(V)}(V_{\lambda^{T}} \otimes V_{\mu^{T}}, V_{\nu^{T}})$ by identifying both vector spaces with something involving the symmetric group.

Problem 3 For this problem, fix a positive integer n. Let λ be a partition with $\ell(\lambda) \leq n$; we pad λ with 0's if necessary to define λ_i for $1 \leq i \leq n$. Let $L \geq \lambda_1$. Define $\lambda^L = (L - \lambda_n, L - \lambda_{n-1}, \ldots, L - \lambda_1)$.

(a) What is the relation between $V_{\lambda}(n)^{\vee}$ and $V_{\lambda L}(n)$?

(b) Let λ , μ and ν be partitions with at most n parts and with $|\nu| = |\lambda| + |\mu|$. Let $L \ge \nu_1$. Let R be the partition L^n , with L repeated n times. Give an isomorphism

$$\operatorname{Hom}_{GL_n}(V_{\lambda}(n) \otimes V_{\mu}(n), V_{\nu}(n)) \cong \operatorname{Hom}_{GL_n}(V_{\lambda}(n) \otimes V_{\mu}(n) \otimes V_{\nu^L}(n), V_R(n)).$$

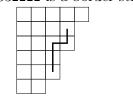
(c) Show that $c_{\lambda\mu}^{\nu} = c_{\lambda\mu\nu^L}^R$.

Problem 4 Let λ be a partition and let x_T be the Gelfand-Tsetlin basis of V_{λ} , indexed by semistandard tabelaux T of shape λ . Let ϕ map $GL_2 \to GL_n$ by

$$\phi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} 1 & \cdots & & \\ & \ddots & & \\ & & a & b & \\ & & c & d & \\ & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

where GL_2 lands in positions *i* and *i* + 1. Let *g* be an element of GL_2 and *T* a SSYT of shape λ . Let x_U appear with nonzero coefficient in $\phi(g) \cdot x_T$. Show that *T* and *U* differ only by changing *i*'s to (i + 1)'s and vice versa.

Problem 5 (Frobenius' Character Formula) We define μ/λ to be a border strip if the squares of μ/λ can be travelled in a single path moving up and to the right one square at a time. We define $h(\mu/\lambda)$ to be the number of vertical steps (one less than the number of rows it occupies). In the figure below, we see that 544332/532222 is a border strip of size 5 and height 3.



(a) Prove that

 $p_r s_{\lambda} = \sum_{\mu/\lambda \text{ a border strip}} (-1)^{h(\mu/\lambda)} s_{\mu}.$

Hint: Copy the proof of Pieri's rule for computing $e_r s_{\lambda}$.

(b) Fix partitions ρ and μ with $|\mu| = |\rho|$. Let $C(\rho, \mu)$ be the set of all chains $\emptyset = \lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_\ell = \mu$ such that λ_i/λ_{i-1} is a border strip of size ρ_i . Show that

$$\langle p_{\rho}, s_{\mu} \rangle = \sum_{(\lambda_{\bullet}) \in C(\rho,\mu)} \prod_{i=1}^{\ell} (-1)^{h(\lambda_i/\lambda_{i-1})}$$