LECTURE 3: COMPLETE HOMOGENOUS SYMMETRIC FUNCTIONS

SCRIBE: YI SU

Define the complete homogenous symmetric functions

]’Lk = E Liy Ly - - - Ty,

1<in<in<...<ig

hy = Z T;T; :Z.T?‘i‘ Z TiTj = Mg + M1y

1<i<j i>1 1<i<j
For a partition A = (A1, Mg, ..., A.), define
ha = ha b, - - by

Example 1.

r

Example 2.
hor = hahy = (Z T + Z ﬂﬁz%)(z )
i>1 1<i<yj k>1
= Zx?—i—QZx?ay%—B Z TiT Ty,
i>1 i#j 1<i<j<k

= ms3 + 2m21 + 3m111

For future reference,

hs = ms + moa + M
hor = mg + 2mo; + 3mun
hiii = ms + 3ma + 6min

So we have a transformation matrix between h’s and m’s. For example, in degree 3, we
just computed that the matrix is:

— =
W DN —
S W =

We have two main results today:
Theorem 3. The h’s form a basis of A

Theorem 4. The transformation matriz between h’s and m’s is symmetric.

1. THE h’S ARE A BASIS

Since the h polynomials are the monomials in hy, hg, hs, ..., the claim is that A =
Z[hy, ha, hs, .. ].

We first show that the natural ring map Z[hy, ha, . ..] — A is surjective. Indeed it is enough
to show every e is a polynomial in A’s. Consider two identities

i>1 k>0
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i>1 k>0
Hence,
1
1= H(l — zt) H A=t (Z(—l)kektk)(z hyt")
i>0 i>0 t k>0 k>0

Comparing the coefficients on both sides, one gets the relation:
hy —ethi_1 + eshp_o —esh_s+ ...+ (—1)k€k =0 (*)

The dimension of degree d parts of Z[hq, hs,...] and A are equal, which proves the injec-
tivity. [
So Z[hh hg .. ] = Z[61,62 .. ] =~ A.

1.1. What about A,,? We have A, = Zlej,es,...]/I where I is the ideal generated by
e; = 0 for i > n+ 1. If one thinks A = Z[hy, hs .. ], then A, = Z[hy, hy...]/J, where J is
the coefficient of * in the power series expansion of 1/(>.., hit") in t for k > n+ 1. The
above proof can also show that A, = Z[hy, ha, ..., h,] so {hy : [(AT) < n} is a basis for A,,.
(In the lecture on Wednesday, we will show that {hy : [(A < n)} is also a basis for A,,).

1.2. The map w. (Section largely added by editor). Noticing the symmetric between
e and h, define a map w : A — A by hi — e, and thus hy +— e,. By applying w to the
equation (*), one can get w(ex) = hg, and hence w(ey) = hy.

From our perspective, w is pretty mysterious. There are lots of applications of the ring of
symmetric functions. In some of those other applications, w is more motivated. For example,
if you use A to study the cohomology of the Grassmannian G(d, n), then w is the isomorphism
G(d,n) = G(n —d,n) which sends a d-plane to ints orthogonal complement. If you use A to
study the representation theory of .5,,, then w tensors with the sign representation. There is
not a similarly elegant answer for GL,, representation theory.

Let’s see what an answer would look like. First of all, what is the representation theory
meaning of e, and h;? Remember that we go from a representation of GL,, to a symmetric
polynomial by taking the trace of the action of a diagonal matrix. Let V' be the standard
n-dimensional representation of GL,. In V', a diagonal matrix acts by itself, and thus has
trace r1 + 22+ -+ + x, = €1 = hy. Let’s look at /\k V. If V has basis eq, €s, ..., €,, then
a basis for /\k V is the (Z) elements e;, A e, A--- Ae;,. A diagonal matrix of GL,, acts
diagonally in this basis, with diagonal elements the products e;e;, - - -€;,, and hence with
trace eg. Similarly, Sym*V will correspond to hy.

So we want an operation which switches /\]C V and Sym*V.

Such a thing occurs in physics and is called the “boson-fermion correspondence”; I don’t
know much about it.

Such a thing also occurs in the theory of super-groups where, if V' is the standard repre-
sentation of GL_,, then /\k V' computed in the category of super-vector spaces is what we
would normally call Sym*V. T also don’t know much about this, and we won’t talk about it.

In a month, we will talk about Schur-Weyl duality, which is about the relation between

GL, and S,, representation theory. Since w has a simple meaning on the symmetric group
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side, we can try to use that to extract an interpretation for w on the G L side; let’s remember
to think about that.

Question from the floor: Are you saying there is no functor GL — rep — GL — rep
which realizes w? Answer: No, I am not willing to make such a specific claim. I am saying
it is not any familiar or elegant operation.

2. THE MATRIX IS SYMMETRIC

Define Ay, = coefficient of m,, in h,.

Theorem 5. Ay, = A,).

0
. 3 QL
Proof. To get output z{'z5* ... a%" the hy, term must contribute % =[], z,” , where a;’s

are vectors in Zso with >, a; = pand 3, a§k) = J\; for all j. Thus,

A,\M:#{al,... ]Za —)\],Zaj— }

Which is equivalent to say
Ay, = number of nonnegative integer matrices with row sum g and column sum A

Clearly, nonnegative integer matrices with row sum g and column sum A is in bijection
with those with row sum A and column sum p. Therefore, Ay, = A . O

Example 6. A = (2,1),1 = (1,1,1), all possible such matrices are

10 10 0 1
10 01 10
01 10 10

This shows that the coefficient of mq11 in hey should be 3.
We can write this proof using generating function identities. By definition, we have
ZAWA =2 m#)
and the above proof showed that
1
> Avma@mu(y) = ] Tz
A i,j>1 iY;
The right hand side is sometimes known as the Cauchy product. Similarly,
1
ZA A (x)my(y Zh H —1_%%
4,521
The right hand 51des are equal, so so are the left hand sides, showing Ay, = A,.
Let’s explain the identity -, , Axyma(x)m,(y) = 15, ﬁ more slowly. Expand the
geometric series in the Cauchy product

Hi,jz1ﬁiyj = (I+my +aiyi +. )L+ zye +afys +..) -
(1+ zoyy + 237 + .. V(1 + Toyo + 23y5 +...) -+
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The coefficient of z{z3yy5 is the number of ways in which we pick (z;y;)* such that the
powers of z;’s is (7,3), and powers of y;’s is (5,5). This is in bijection with the integer
matrices with nonnegative entries with row sum (7,3) and column sum (5,5). For example

(z1y1)°(21y2)*(T2y2)? corresponds to the matrix (§32).

2.1. The Hall inner product. The symmetry of the matrix Ay, can be used in the fol-

lowing way: Define a bilinear product (hy,m,) = d,,, where ¢y, is the Kronecker delta, and

then (hy, hy) = (hy, >, Axom,) = Ay,. Since Ay, = Ay, this bilinear form is symmetric.
Here is a useful fact about this bilinear form, which we’ll prove next time.

Proposition 7. Let {f\} and {g,} be two homogenous bases of A. Then f and g are dual
basis (i.e. (fx, gu) = Oxu) if and only if >, fr(z)gr(y) = H” 17;%.

The homogeneity is just to make sure there are no issues about formal convergence of the
sum; we could replace it with any condition that made the sum formally convergent.




