LECTURE 3: COMPLETE HOMOGENOUS SYMMETRIC FUNCTIONS

SCRIBE: YI SU

Define the *complete homogenous symmetric functions*

$$h_k = \sum_{1 \le i_1 \le i_2 \le \dots \le i_k} x_{i_1} x_{i_2} \dots x_{i_k}$$

Example 1.

$$h_2 = \sum_{1 \le i \le j} x_i x_j = \sum_{i \ge 1} x_i^2 + \sum_{1 \le i < j} x_i x_j = m_2 + m_{11}$$

For a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, define

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \dots h_{\lambda_r}$$

Example 2.

$$h_{21} = h_2 h_1 = \left(\sum_{i \ge 1} x_i^2 + \sum_{1 \le i < j} x_i x_j\right) \left(\sum_{k \ge 1} x_k\right)$$
$$= \sum_{i \ge 1} x_i^3 + 2\sum_{i \ne j} x_i^2 x_j + 3\sum_{1 \le i < j < k} x_i x_j x_k$$
$$= m_3 + 2m_{21} + 3m_{111}$$

For future reference,

So we have a transformation matrix between h's and m's. For example, in degree 3, we just computed that the matrix is:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix}$$

We have two main results today:

Theorem 3. The h's form a basis of Λ

Theorem 4. The transformation matrix between h's and m's is symmetric.

1. The h's are a basis

Since the *h* polynomials are the monomials in h_1, h_2, h_3, \ldots , the claim is that $\Lambda = \mathbb{Z}[h_1, h_2, h_3, \ldots].$

We first show that the natural ring map $\mathbb{Z}[h_1, h_2, \ldots] \to \Lambda$ is surjective. Indeed it is enough to show every e_k is a polynomial in h's. Consider two identities

$$\prod_{i\geq 1} (1+x_i t) = \sum_{k\geq 0} e_k t^k$$

$$\prod_{i\geq 1} \frac{1}{1-x_i t} = \sum_{k\geq 0} h_k t^k$$

Hence,

$$1 = \prod_{i \ge 0} (1 - x_i t) \prod_{i \ge 0} \frac{1}{(1 - x_i t)} = (\sum_{k \ge 0} (-1)^k e_k t^k) (\sum_{k \ge 0} h_k t^k)$$

Comparing the coefficients on both sides, one gets the relation:

$$h_k - e_1 h_{k-1} + e_2 h_{k-2} - e_3 h_{k-3} + \dots + (-1)^k e_k = 0$$
 (*)

The dimension of degree d parts of $\mathbb{Z}[h_1, h_2, \ldots]$ and Λ are equal, which proves the injectivity. \Box

So $\mathbb{Z}[h_1, h_2 \ldots] \cong \mathbb{Z}[e_1, e_2 \ldots] \cong \Lambda.$

1.1. What about Λ_n ? We have $\Lambda_n \cong \mathbb{Z}[e_1, e_2, \ldots]/I$ where I is the ideal generated by $e_i = 0$ for $i \ge n+1$. If one thinks $\Lambda \cong \mathbb{Z}[h_1, h_2 \ldots]$, then $\Lambda_n \cong \mathbb{Z}[h_1, h_2 \ldots]/J$, where J is the coefficient of t^k in the power series expansion of $1/(\sum_{i\ge 0} h_i t^i)$ in t for $k \ge n+1$. The above proof can also show that $\Lambda_n = \mathbb{Z}[h_1, h_2, \ldots, h_n]$ so $\{h_\lambda : l(\lambda^T) \le n\}$ is a basis for Λ_n . (In the lecture on Wednesday, we will show that $\{h_\lambda : l(\lambda \le n)\}$ is also a basis for Λ_n).

1.2. The map ω . (Section largely added by editor). Noticing the symmetric between e and h, define a map $\omega : \Lambda \to \Lambda$ by $h_k \mapsto e_k$ and thus $h_\lambda \mapsto e_\lambda$. By applying ω to the equation (*), one can get $\omega(e_k) = h_k$, and hence $\omega(e_\lambda) = h_\lambda$.

From our perspective, ω is pretty mysterious. There are lots of applications of the ring of symmetric functions. In some of those other applications, ω is more motivated. For example, if you use Λ to study the cohomology of the Grassmannian G(d, n), then ω is the isomorphism $G(d, n) \cong G(n - d, n)$ which sends a *d*-plane to ints orthogonal complement. If you use Λ to study the representation theory of S_n , then ω tensors with the sign representation. There is not a similarly elegant answer for GL_n representation theory.

Let's see what an answer would look like. First of all, what is the representation theory meaning of e_k and h_k ? Remember that we go from a representation of GL_n to a symmetric polynomial by taking the trace of the action of a diagonal matrix. Let V be the standard n-dimensional representation of GL_n . In V, a diagonal matrix acts by itself, and thus has trace $x_1 + x_2 + \cdots + x_n = e_1 = h_1$. Let's look at $\bigwedge^k V$. If V has basis e_1, e_2, \ldots, e_n , then a basis for $\bigwedge^k V$ is the $\binom{n}{k}$ elements $e_{i_1} \land e_{i_2} \land \cdots \land e_{i_k}$. A diagonal matrix of GL_n acts diagonally in this basis, with diagonal elements the products $e_{i_1}e_{i_2}\cdots e_{i_k}$, and hence with trace e_k . Similarly, Sym^kV will correspond to h_k .

So we want an operation which switches $\bigwedge^k V$ and $\operatorname{Sym}^k V$.

Such a thing occurs in physics and is called the "boson-fermion correspondence"; I don't know much about it.

Such a thing also occurs in the theory of super-groups where, if V is the standard representation of GL_{-n} , then $\bigwedge^k V$ computed in the category of super-vector spaces is what we would normally call Sym^kV. I also don't know much about this, and we won't talk about it.

In a month, we will talk about Schur-Weyl duality, which is about the relation between GL_n and S_m representation theory. Since ω has a simple meaning on the symmetric group

side, we can try to use that to extract an interpretation for ω on the GL side; let's remember to think about that.

Question from the floor: Are you saying there is no functor $GL - \text{rep} \rightarrow GL - \text{rep}$ which realizes ω ? Answer: No, I am not willing to make such a specific claim. I am saying it is not any familiar or elegant operation.

2. The matrix is symmetric

Define $A_{\lambda\mu} = \text{coefficient of } m_{\mu} \text{ in } h_{\lambda}.$

Theorem 5. $A_{\lambda\mu} = A_{\mu\lambda}$.

Proof. To get output $x_1^{\mu_1} x_2^{\mu_2} \dots x_r^{\mu_r}$ the h_{λ_j} term must contribute $x^{\alpha_j} = \prod_k x_k^{\alpha_j^{(k)}}$, where α_j 's are vectors in $\mathbb{Z}_{\geq 0}$ with $\sum_j \alpha_j = \mu$ and $\sum_k \alpha_j^{(k)} = \lambda_j$ for all j. Thus,

$$A_{\lambda\mu} = \#\left\{ \left(\alpha_1, \dots, \alpha_r\right) | \sum_k \alpha_j^{(k)} = \lambda_j, \ \sum_j \alpha_j = \mu \right\}$$

Which is equivalent to say

 $A_{\lambda\mu}$ = number of nonnegative integer matrices with row sum μ and column sum λ

Clearly, nonnegative integer matrices with row sum μ and column sum λ is in bijection with those with row sum λ and column sum μ . Therefore, $A_{\lambda\mu} = A_{\mu\lambda}$. \Box

Example 6. $\Lambda = (2, 1), \mu = (1, 1, 1), all possible such matrices are$

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$$

This shows that the coefficient of m_{111} in h_{21} should be 3.

We can write this proof using generating function identities. By definition, we have

$$\sum_{\lambda,\mu} A_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y) = \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$$

and the above proof showed that

$$\sum_{\lambda,\mu} A_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y) = \prod_{i,j \ge 1} \frac{1}{1 - x_i y_j}.$$

The right hand side is sometimes known as the *Cauchy product*. Similarly,

$$\sum_{\mu,\lambda} A_{\mu\lambda} m_{\lambda}(x) m_{\mu}(y) = \sum_{\mu} h_{\mu}(x) m_{\mu}(y) = \prod_{i,j \ge 1} \frac{1}{1 - y_i x_j}$$

The right hand sides are equal, so so are the left hand sides, showing $A_{\lambda\mu} = A_{\mu\lambda}$.

Let's explain the identity $\sum_{\lambda,\mu} A_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y) = \prod_{i,j \ge 1} \frac{1}{1-x_i y_j}$ more slowly. Expand the geometric series in the Cauchy product

$$\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = (1+x_1 y_1 + x_1^2 y_1^2 + \ldots)(1+x_1 y_2 + x_1^2 y_2^2 + \ldots) \cdots$$
$$(1+x_2 y_1 + x_2^2 y_1^2 + \ldots)(1+x_2 y_2 + x_2^2 y_2^2 + \ldots) \cdots$$
$$\cdots$$

The coefficient of $x_1^7 x_2^3 y_1^5 y_2^5$ is the number of ways in which we pick $(x_i y_j)^k$ such that the powers of x_i 's is (7,3), and powers of y_j 's is (5,5). This is in bijection with the integer matrices with nonnegative entries with row sum (7,3) and column sum (5,5). For example $(x_1y_1)^5(x_1y_2)^2(x_2y_2)^3$ corresponds to the matrix $\begin{pmatrix} 5 & 2 \\ 0 & 3 \end{pmatrix}$.

2.1. The Hall inner product. The symmetry of the matrix $A_{\lambda\mu}$ can be used in the following way: Define a bilinear product $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda\mu}$, where $\delta_{\lambda\mu}$ is the Kronecker delta, and then $\langle h_{\lambda}, h_{\mu} \rangle = \langle h_{\lambda}, \sum_{\nu} A_{\lambda\nu} m_{\nu} \rangle = A_{\lambda\mu}$. Since $A_{\lambda\mu} = A_{\mu\lambda}$, this bilinear form is symmetric. Here is a useful fact about this bilinear form, which we'll prove next time.

Proposition 7. Let $\{f_{\lambda}\}$ and $\{g_{\mu}\}$ be two homogenous bases of Λ . Then f and g are dual basis (i.e. $\langle f_{\lambda}, g_{\mu} \rangle = \delta_{\lambda\mu}$) if and only if $\sum_{\lambda} f_{\lambda}(x)g_{\lambda}(y) = \prod_{i,j} \frac{1}{1-x_iy_j}$.

The homogeneity is just to make sure there are no issues about formal convergence of the sum; we could replace it with any condition that made the sum formally convergent.