
NOTES FOR SEPTEMBER 19, 2012: SEMI-STANDARD YOUNG TABLEAUX

CHARLOTTE CHAN

(Monday is Rosh Hoshanah. Jonah Blasiak will substitute on Monday. You can email your
homework solutions or put homework solutions in David Speyer’s mailbox.)

Today we will introduce Schur polynomials. They are the most important basis for symmetric
polynomials and they are the characters of GLn(C), but they are difficult to define. We will start
by describing them in a combinatorial way, via semi-standard young tableaux.

1. Definition and First Examples

Definition 1.1. For a partition λ, a semi-standard young tableaux (SSYT) of shape λ is a filling
of the basis of λ with positive integers so that the rows weakly increase and the columns strictly
increase.

Remark. Tableaux is plural, tableau is singular. If you know this, you may avoid annoying a
Francophone referee. Or you can just always write SSYT.

Example 1.1. For λ = (4, 2, 1), a SSYT of shape λ is

1 1 2 6
2 5
3

Definition 1.2. If T is a SSYT, then we write

xT = xnumber of 1’s
1 xnumber of 2’s

2 · · · .
So to each SSYT, we may assign a monomial in xi’s.

Example 1.2. We have

x

1 1 2 6
2 5
3

= x21x
2
2x3x5x6.

Definition 1.3. We define the Schur polynomial of shape λ to be

sλ(x1, x2, . . .) =
∑

T of shape λ

xT .

Remark. It is not clear that sλ is a symmetric polynomial.

Example 1.3. Consider s21. We could have

i i
j or

i j
j for i < j,

or

i j
k or

i k
j for i < j < k.

Therefore, we have

s21 =
∑
i<j

x2ixj +
∑
i<j

xix
2
j + 2

∑
i<j<k

xixjxk = m21 + 2m111.

Example 1.4. We have sk = hk because i1 ≤ · · · ≤ ik is the only SSYT of shape k. So

sk =
∑

xi1 · · ·xik = hk.
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Example 1.5. We have s11 · · · 1︸ ︷︷ ︸
k

= ek since i1 < · · · < ik is the only tableau of shape 1k. Hence

s1k =
∑

xi1 · · ·xik = ek.

Example 1.6. In Λn, we have

s(λ1+1)(λ2+1)···(λn+1) = x1 · · ·xnsλ1···λn .

This is because the left hand column of a tableau of shape (λ1 + 1)(λ2 + 1) · · · (λn + 1) must have
first column 123 · · ·n. Note that if `(λ) > n, then sλ = 0 in Λn.

2. Why is Sλ symmetric?

Because the symmetric group is generated by transpositions, it is enough to show that the
coefficients of xa11 · · ·x

ai
i x

ai+1

i+1 · · ·xann and xa11 · · ·x
ai+1

i xaii+1 · · ·xann are equal.
Consider the tableau T and look only at the positions of i and i+ 1. Set j = i+ 1. Now consider

a portion of a tableau:

∗ ∗ ∗ ∗ ∗ ∗ i i i i j j j j
∗ ∗ i i i j j j
i i j

If an i and a j are in the same column, pair them off. The remaining i’s and j’s lie in horizontal
strips, where each strip looks like

i i i j j

Within each row, interchange the number of i’s and j’s. Then we have

i i j j j

The total effect is that we will have switched the number of i’s and j’s. This gives an involution

Si : SSYT(λ)→ SSYT(λ),

switching the number of i’s and the number of j = (i+ 1)’s. This involution is called the Bender-
Knuth involution.

In particular, this takes a tableau with corresponding monomial xa11 · · ·x
ai
i x

ai+1

i+1 · · ·xann to a

tableau with monomial xa11 · · ·x
ai+1

i xxii+1 · · ·xann . This therefore show that sλ is symmetric. �

3. Why are the Sλ a basis?

We first introduce some notation.

Definition 3.1. Write sλ =
∑
Kλµmµ. So Kλµ is the number of SSYT of shape λ with content

µ. The Kλµ are called Kostka numbers.

Example 3.1. The content of

1 1 1
2

is (3, 1) since

x

1 1 1
2

= x31x
1
2.

On Problem Set 2, Problem 3, we will show that it Kλµ is nonzero, then λ � µ. That is, if
λ 6� µ, then Kλµ and if λ = µ then Kλ,µ. Using this, we have that the sλ’s are upper triangular in
the mµ’s with 1’s along the diagonal. Thus sλ is a basis for Λ.

In Λn, the sλ with `(λ) ≤ n are a basis and sλ = 0 if `(λ) > n.
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4. The Orthonormality of sλ

We mention two ways of doing this. Recall that we defined 〈 , 〉 so that 〈hλ,mµ〉 = δλµ. In
matrices, we can check one of two things:

(1) We can check that the matrices m → s and s → h are transposes of each other. That
is, we can check

∑
Kµλsλ = hµ. (This is the route that Stanley’s book uses.) In the end,

this comes down to wanting to show that there is a bijection between rectangular arrays of
integers (m → h matrix) to paris of SSYT. There is such a bijection and this bijection is
called the Robinson-Schensted-Knuth algorithm (RSK).

More precisely, given λ, µ with |λ| = |µ|, the number of rectangular arrays with row sum
λ and column sum µ is equal to the number of ordered pairs (T,U) where T and U are
SSYT of the same shape with content(T ) = λ and content(U) = µ.

(2) The other strategy is to show that h→ s and s→ m are transposes of each other. We will
do this next week. We need formulas for writing these bases in terms of each other. We
defer the proofs to next week but state the formulas now.

The formula h→ s is called Jacobi-Trudi and says

sλ1···λn = det


hλ1 hλ1+1 · · · hλ1+n−1

hλ2−1 hλ2 · · · hλ2+n−2
...

...
. . .

...
hλn−n−1 hλn−(n−2) · · · hλn


So for example,

s31 =

∣∣∣∣h3 h4
h0 h1

∣∣∣∣ .
Here h0 = 1 and h−k = 0 for k > 0.

The formula s→ m is a ratio of alternants

sλ1···λn(x1, . . . , xn) =

det


xλ1+n−1
1 xλ1+n−1

2 · · · xλ1+n−1
n

...
...

. . .
...

x
λn−1+1
1 x

λn−1+1
2 · · · xλ+n−1+1

n

xλn1 xλn2 · · · xλnn



det


xn−1
1 xn−1

2 · · · xn−1
n

...
...

. . .
...

x1 x2 · · · xn
1 1 · · · 1


Alternatively, the denominator is

∏
i<j(xi − xj).


