NOTES FOR SEPTEMBER 12

SCRIBE: JAKE LEVINSON

Last time:

- We defined an inner product $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda\mu}$ and showed that this puts a symmetric bilinear form on $\Lambda \times \Lambda \to \mathbb{Z}$. On the homework, you will check that it is positive definite.
- We claimed that the h_{λ} with $\ell(\lambda) \leq n$ are a basis for Λ_n .

Today: we'll check this claim, and also show that if (f_{λ}) , (g_{λ}) are families of symmetric polynomials such that $\sum_{\lambda} f_{\lambda}(x)g_{\lambda}(y) = \prod_{i,j} \frac{1}{1-x_iy_j}$, then $\{f_{\lambda}\}$ and $\{g_{\lambda}\}$ are dual bases with respect to the inner product $\langle \cdot, \cdot \rangle$, that is, $\langle f_{\lambda}, g_{\mu} \rangle = \delta_{\lambda\mu}$.

Claim. The h_{λ} with $\ell(\lambda) \leq n$ are a basis for Λ_n .

Proof. Given our inner product on Λ and a surjective map $\pi : \Lambda \to \Lambda_n$, we can build a backwards map $\Lambda_n \to \Lambda$, since Λ decomposes as $\Lambda = \ker \pi \oplus (\ker \pi)^{\perp}$, and the orthogonal complement is then isomorphic to Λ_n . Note that we have used the positive-definiteness of our inner product to get the direct sum decomposition: in particular, positive definiteness implies that $(\ker \pi) \cap (\ker \pi)^{\perp} = 0$, so that $\ker \pi + (\ker \pi)^{\perp} = \ker \pi \oplus (\ker \pi)^{\perp} = \Lambda$.

Our map $\pi : \Lambda \to \Lambda_n$ is defined by sending

$$x_i \mapsto \begin{cases} x_i & i \le n \\ 0 & i > n. \end{cases}$$

In our setting, ker $\pi = \text{Span}(m_{\lambda} : \ell(\lambda) > n)$, so (using the dual basis) the orthogonal complement is $(\ker \pi)^{\perp} = \text{Span}(h_{\lambda} : \ell(\lambda) \le n)$. In particular, this shows that the (span of the) h_{λ} maps isomorphically to Λ_n .

Note: Our preferred lifting $\Lambda_n \to \Lambda$ will be $h_\lambda \mapsto h_\lambda$ for $\ell(\lambda) \leq n$. We will use this to define an inner product on Λ_n .

Theorem. Let f_{λ}, g_{λ} be sets of homogeneous symmetric polynomials such that deg $f_{\lambda} = \deg g_{\lambda} = |\lambda|$. If $\sum_{\lambda} f_{\lambda}(x)g_{\lambda}(y) = \prod_{i,j} \frac{1}{1 - x_i y_j}$, then f and g are dual bases (with respect to our inner product $\langle \cdot, \cdot \rangle$.

Proof. . First we show the f_{λ} span $\mathbb{Q} \otimes \Lambda$. If not, there exists $h \neq 0$ in Λ such that $\langle f_{\lambda}, h \rangle = 0$ for all λ . We show that h = 0.

Write h in the homogeneous basis, $h(x) = \sum c_{\lambda} h_{\lambda}(x)$. We have

$$\langle h(x), \prod \frac{1}{1-x_i y_j} \rangle = \langle h(x), \sum h_\lambda(y) m_\lambda(x) \rangle$$

= $\sum c_\lambda h_\lambda(y)$

(The inner product is in the x variables.) On the other hand, $\langle h(x), \sum f_{\lambda}(x)g_{\lambda}(y)\rangle = 0$. So, we can conclude that $\sum c_{\lambda}h_{\lambda}(y) = 0$, so by linear independence $c_{\lambda} = 0$. Thus h was zero after all.

Thus the f_{λ} span $\mathbb{Q} \otimes \Lambda$ in every degree, and by dimension counting (since we assumed deg $f_{\lambda} = |\lambda|$, the f_{λ} 's are indexed by partitions, just like the known e, h, m bases) they are linearly independent. Since this holds in each degree, we see that the f_{λ} collectively give a basis for $\mathbb{Q} \otimes \Lambda$. So there exists *some* dual basis f_{λ}^{\vee} . We will show that $f_{\lambda}^{\vee} = g_{\lambda}$.

First consider the inner product

$$\langle f_{\lambda}^{\vee}(x), \prod_{i,j} \frac{1}{1 - x_i y_j} \rangle = \langle f_{\lambda}^{\vee}(x), \sum f_{\lambda}(x) g_{\lambda}(y) \rangle = g_{\lambda}(y).$$

On the other hand,

$$\langle m_{\lambda}(x), \prod_{i,j} \frac{1}{1 - x_i y_j} \rangle = \langle m_{\lambda}(x), \sum h_{\lambda}(x) m_{\lambda}(y) \rangle = m_{\lambda}(y).$$

So, by linearity, for any $f \in \Lambda$,

$$\langle f(x), \prod_{i,j} \frac{1}{1 - x_i y_j} \rangle = f(y)$$

Thus, our previous equation now reads

$$\langle f_{\lambda}^{\vee}(x), \prod_{i,j} \frac{1}{1 - x_i y_j} \rangle = g_{\lambda}(y) = f_{\lambda}^{\vee}(y).$$

Note: Our assumptions of homogeneity (and symmetry) were important in this theorem. Here's an example of why: in the case n = 1, we have

$$\frac{1}{1-xy} = \sum h_k(x)m_k(y) = \sum x^k y^k.$$

Now we'll make some 'bad choices'. In $\Lambda \otimes \mathbb{Q}$, we could write

$$\frac{1}{1-xy} = \sum h_k(x)m_k(y) = 1 + \underbrace{\left(\frac{1}{2}x\right)\left(\frac{1}{2}y\right) + \dots + \left(\frac{1}{2}x\right)\left(\frac{1}{2}y\right)}_{4 \text{ times}} + \underbrace{\left(\frac{1}{2}x^2\right)\left(\frac{1}{2}y^2\right) + \dots + \left(\frac{1}{2}x^2\right)\left(\frac{1}{2}y^2\right)}_{4 \text{ times}} + \dots$$

So now we have

So the f's are too numerous to be a basis for $\mathbb{Q} \otimes \Lambda$. (We could make similar counterexamples without working over \mathbb{Q} , just by choosing 'too many' polynomials in each degree.)

Analogous statement for finite-dimensional vector spaces. Say V is a finite dimensional vector space with basis v_1, \ldots, v_n and V^{\vee} its dual, with basis w_1, \ldots, w_n . Then (v_i) and (w_i) are dual bases if and only if

$$\sum_{i=1}^{n} v_i \otimes w_i = \text{Id in } V \otimes V^{\vee} = \mathcal{H}om(V, V).$$

In our setting, we have the identity $k[x, y] = k[x] \otimes_k k[y]$ (as k-algebras), and we've been using this to dodge writing \otimes , and using the inner product $\langle \cdot, \cdot \rangle$ to dodge distinguishing V and V^{\vee} .

Next lecture (Friday): Schur polynomials s_{λ} , our last basis for Λ . These appear as characters of irreducible representations of GL_n and are *self-dual*: $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$. Bear in mind that it isn't (a priori) obvious that a self-dual basis exists! (Note that one must exist in $\Lambda \otimes \mathbb{R}$, since there's only one positive definite bilinear form on \mathbb{R} .) On the other hand, since it exists, it is (essentially) unique:

Observation: Let $L \cong \mathbb{Z}^n$ be a free abelian group of rank n with a symmetric bilinear form $\langle \cdot, \cdot \rangle : L \times L \to \mathbb{Z}$. Suppose there exists a basis e_i for L such that $\langle e_i, e_j \rangle = \delta_{ij}$. Then any other such basis must be of the form $\{\pm e_i\}$.

Proof. Let f_i be another orthonormal basis, and write $f_i = \sum c_i e_i$, with $c_i \in \mathbb{Z}$. Then

$$\langle f_i, f_i \rangle = \sum c_i^2 = 1,$$

so one $c_i = \pm 1$ and all the others are 0. Thus $f_i = \pm e_j$ for some j. Since $\langle f_i, f_j \rangle = 0$ for $i \neq j$, the f_i are a permutation of the $(\pm)e_i$.

Monday and Wednesday: Fill in the details and prove two big identities needed to prove the self-duality of the Schur polynomials s_{λ} .