NOTES FOR SEPTEMBER 19, 2012: THE RATIO OF ALTERNANTS FORMULA

STEFAN FROEHLICH

Today we will we begin the proof of the ratio of alternants formula for schur polynomials.

1. Beginning Examples and Discussion

A Schur polynomial:

$$s_{21}(x,y,z) = y^2 z +$$
 $xy^2 + x^2 y$
 $yz^2 + xz^2$
 xz^2

The coefficients of $s_{72}(x, y)$:

		1		1		1		1		1		1		
	1		2		2		2		2		2		1	
L		2		3		3		3		3		2		1
	1		2		3		3		3		2		1	
		1		2		3		3		2		1		
			1		2		3		2		1			
				1		2		2		1				
					1		1		1					

In both of the diagrams, the page is considered to be the plane $a+b+c = |\lambda|$ in \mathbb{Z}^3 . The monomial $x^a y^b z^c$ in the schur polynomial is associated with the point (a, b, c). In the second diagram, only the coefficients of the monomials are given.

Question from the floor: Why do we get nice shapes, like hexagons?

Answer You know that, if the monomial m_{μ} appears in s_{λ} , the $\mu \leq \lambda$. So what we are seeing is the set of μ such that $\mu \leq \lambda$, for a fixed λ . The elegant geometry of these pictures can be explained by:

Proposition Let λ and μ be partitions with n parts. Then $\mu \leq \lambda$ if and only if the vector μ in \mathbb{Z}^n is in the convex hull of $S_n \cdot \lambda$.

We will prove one direction of this. Assume $\mu \in \operatorname{Hull}(S_n \cdots \lambda)$. We want to show $\mu_1 + \cdots + \mu_k \leq \lambda_1 + \cdots + \lambda_k$. A linear function on a convex bounded polytope is always maximized at a vertex. $\max_{x \in \operatorname{Hull}(S_n \cdot \lambda)} (x_1 + \cdots + x_k) = \max_{x \in S_n \cdot \lambda} (x_1 + \cdots + x_k) = \max_{i_1, \cdots, i_k \text{distinct}} (\lambda_{i_1} + \cdots + \lambda_{i_k}) \leq \lambda_1 + \cdots + \lambda_k.$ So in particular $\mu_1 + \cdots + \mu_k \leq \lambda_1 + \cdots + \lambda_k$.

You might also notice that the coefficients in these pictures are varying in a piecewise linear way. See Problem Set 2, Problem 2.

2. The Ratio of Alternants Formula – start of proof

Notation

- For a partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$, let $\Delta(\lambda) = \det(x_i^{\lambda_j}) = \det\begin{pmatrix} x_1^{\lambda_1} & x_2^{\lambda_1} & \cdots & x_n^{\lambda_1} \\ x_1^{\lambda_2} & x_2^{\lambda_2} & \cdots & x_n^{\lambda_2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{\lambda_n} & x_2^{\lambda_n} & \cdots & x_n^{\lambda_n} \end{pmatrix}$.
- Let $\rho = (n 1, n 2, \cdots, 1, 0).$

Theorem(Ratio of alternants formula): $s_{\lambda}(x_1, x_2, \cdots, x_n) = \frac{\Delta(\lambda + \rho)}{\Delta(\rho)}$.

 $\Delta(\lambda)$ is antisymmetric in the x_i , so $x_i - x_j$ divides $\Delta(\lambda)$ for all i < j. This means that $\prod_{i < j} (x_i - x_j)$ divides $\Delta(\lambda)$ for all λ . Set $F_{\lambda}(x_1, \dots, x_n) = \frac{\Delta(\lambda)}{\prod_{i < j} (x_i - x_j)}$. The numerator and denominator are both antisymmetric in the x_i , so F_{λ} is symmetric in the x_i . We also have that $\deg(F_{\lambda}) = |\lambda| - \binom{n}{2}$.

In particular, F_{ρ} has degree 0, so it is constant; in fact it is 1. Let's state this explicitly:

$$\det \begin{pmatrix} x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} = \det(x_i^{n-j}) = \Delta(\rho) = \prod_{i < j} (x_i - x_j)$$

This is called *Vandermonde's Determinant*.

To prove the ratio of alternants formula, we need to show that $s_{\lambda} \cdot \Delta(\rho) = \Delta(\lambda + \rho)$. So we want to prove

(1)
$$\left(\sum_{\mu \in \mathbb{Z}_{\geq 0}^n} K_{\lambda\mu} x^{\mu}\right) \left(\sum_{\omega \in S_n} (-1)^{\omega} x^{\omega(p)}\right) = \sum_{\omega \in S_n} (-1)^{\omega} x^{\omega(\lambda+\rho)}$$

Notation

- S_n is the group of permutations of n letters.
- For $\omega \in S_n$, $(-1)^{\omega}$ is the sign of the permutation.
- S_n acts on \mathbb{Z}^n by permuting the entries.
- For a partition λ and $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, $K_{\lambda\alpha}$ is the number of SSYT of shape λ and content α .

•
$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$
 for $\alpha = (\alpha_1, \cdots, \alpha_n)$

We want to show that the coefficient of x^{β} is the same on both sides of (1). Both sides of (1) are antisymmetric, so if we know that the coefficients are equal when $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$ then we can use the antisymmetry to get that the coefficients are equal for all β . We also have, by the antisymmetry, that if $\beta_i = \beta_{i+1}$ then both coefficients are 0, so we may assume that $\beta_1 > \beta_2 > \cdots > \beta_n$.

Define α by $\beta = \alpha + \rho$. The entries of β are strictly decreasing, so α is a partition. Every monomial appearing in the expansion on both sides of (1) has degree $|\lambda| + |\rho|$. This means we are interested in when $|\beta| = |\lambda| + |\rho|$, so $|\alpha| = |\lambda|$. Matching the coefficients of $x^{\alpha+\rho}$ on both sides of (1), we get that we need

$$\sum_{w \in S_n} (-1)^{\omega} K_{\lambda, \alpha + \rho - w(\rho)} = \begin{cases} 1 & \alpha = \lambda \\ 0 & \text{otherwise} \end{cases}$$

To achieve this end we will use a trick introduced by Eğecioğlu and Remmell¹. (At least, David thinks they were the first to use this trick.)

Because $K_{\lambda\gamma}$ is a symmetric function of γ , we can change the left hand side of this equation to

$$\sum_{w \in S_n} (-1)^w K_{\lambda, w^{-1}(\alpha) + w^{-1}(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v^*(\alpha) + \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v^*(\alpha) + \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v^*(\alpha) + \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda, v(\alpha) + v(\rho) - \rho} = \sum_{v \in S_n} (-1)^v K_{\lambda,$$

Here we define

$$v^*(\alpha) := v(\alpha) + v(\rho) - \rho.$$

¹Eğecioğlu and Remmel, A combinatorial interpretation of the inverse Kostka matrix, Linear and Multilinear Algebra **26** (1990), no. 1-2, 59–84.

Our goal is now to prove that

(2)
$$\sum_{v \in S_n} (-1)^v K_{\lambda, v^*(\alpha)} = \begin{cases} 1 & \alpha = \lambda \\ 0 & \text{otherwise} \end{cases}$$

The advantage of this change of variables is that $\alpha \mapsto v^*(\alpha)$ is an action of S_n . Specifically, it is the standard S_n action translated to fix $-\rho$ instead of 0.

Example We show the effect of this trick for $\lambda = (7, 3, 0)$, $\alpha = (6, 3, 1)$. The coefficients of s_{730} are displayed as in the beginning of the notes. The coefficient of x^{α} is marked in red. The terms of the form $\alpha + \rho - w(\rho)$ are circled; those of the form $v(\alpha) + v(\rho) - \rho$ are surrounded by squares. In both cases, we are trying to prove that an alternating sum of the marked numbers is zero, namely, that 2 - 1 - 1 = 0. Notice that the circled numbers form a small hexagon near α , because they are all displacements of α by vectors $\rho - w(\rho)$. On the other hand, notice that the squared numbers form a hexagon with center slightly offset from the center of the figure; this is because the starred action is a translate of the standard action. Finally, notice that each square corresponds to a circle which contains the same number, in a position related to it by the non-starred S_3 action.

3. Preview of Next Class

We will prove (2) next class by using a sign canceling involution. We will always be canceling tableaux with content γ against tableaux of content $s_i^*\gamma$ where $s_i = s_{i,i+1} \in S_n$ is the permutation switching *i* and *i*+1. Since the starred maps give an S_n action, $s_i^*v^*\alpha = (s_iv)^*\alpha$, so we are canceling terms of the correct forms.

So, let's understand the action of s_i^* . We have

$$s_i^*(\gamma_1, \cdots, \gamma_2) = (\gamma_1, \gamma_2, \cdots, \gamma_{i-1}, \gamma_{i+1} - 1, \gamma_i + 1, \gamma_{i+2}, \cdots, \gamma_n)$$

I like to think of this in the following way: Suppose we have a copies of i, and b copies of i+1. Put one i+1 aside, switch the other (i+1)'s to i's and i's to (i+1)'s. For example, (10,3) becomes (2,11).

Example: This is a diagram of the SSYT of $\lambda = (21)$. The SSYT related by the involution have arrows between them along with the permutation $s_{i,i+1}^*$ relating their contents. We will describe this involution next time.

