
NOTES FOR SEPTEMBER 19, 2012: THE RATIO OF ALTERNANTS

FORMULA

STEFAN FROEHLICH

Today we will we begin the proof of the ratio of alternants formula for schur polynomials.

1. Beginning Examples and Discussion

A Schur polynomial:

s21(x, y, z) =
xy2+ x2y

y2z+ 2xyz+ x2z
yz2+ xz2

The coefficients of s72(x, y):

1 1 1 1 1 1
1 2 2 2 2 2 1

1 2 3 3 3 3 2 1
1 2 3 3 3 2 1

1 2 3 3 2 1
1 2 3 2 1

1 2 2 1
1 1 1

In both of the diagrams, the page is considered to be the plane a+b+c = |λ| in Z3. The monomial
xaybzc in the schur polynomial is associated with the point (a, b, c). In the second diagram, only
the coefficients of the monomials are given.

Question from the floor: Why do we get nice shapes, like hexagons?
Answer You know that, if the monomial mµ appears in sλ, the µ � λ. So what we are seeing is

the set of µ such that µ � λ, for a fixed λ. The elegant geometry of these pictures can be explained
by:

Proposition Let λ and µ be partitions with n parts. Then µ � λ if and only if the vector µ in
Zn is in the convex hull of Sn · λ.

We will prove one direction of this. Assume µ ∈ Hull(Sn · · ·λ). We want to show µ1 + · · ·+µk ≤
λ1 + · · · + λk. A linear function on a convex bounded polytope is always maximized at a vertex.

max
x∈Hull(Sn·λ)

(x1 + · · ·+ xk) = max
x∈Sn·λ

(x1 + · · ·+ xk) = max
i1,··· ,ikdistinct

(λi1 + · · ·+ λik) ≤ λ1 + · · ·+ λk. So

in particular µ1 + · · ·+ µk ≤ λ1 + · · ·+ λk.
You might also notice that the coefficients in these pictures are varying in a piecewise linear way.

See Problem Set 2, Problem 2.

2. The Ratio of Alternants Formula – start of proof

Notation

• For a partition λ = (λ1, λ2, · · · , λn), let ∆(λ) = det(x
λj
i ) = det


xλ11 xλ12 · · · xλ1n
xλ21 xλ22 · · · xλ2n

...
...

. . .
...

xλn1 xλn2 · · · xλnn

.

• Let ρ = (n− 1, n− 2, · · · , 1, 0).
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Theorem(Ratio of alternants formula): sλ(x1, x2, · · · , xn) = ∆(λ+ρ)
∆(ρ) .

∆(λ) is antisymmetric in the xi, so xi−xj divides ∆(λ) for all i < j. This means that
∏
i<j

(xi−xj)

divides ∆(λ) for all λ. Set Fλ(x1, · · · , xn) = ∆(λ)∏
i<j

(xi−xj) . The numerator and denominator are both

antisymmetric in the xi, so Fλ is symmetric in the xi. We also have that deg(Fλ) = |λ| −
(
n
2

)
.

In particular, Fρ has degree 0, so it is constant; in fact it is 1. Let’s state this explicitly:

det


xn−1

1 xn−1
2 · · · xn−1

n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

. . .
...

1 1 · · · 1

 = det(xn−ji ) = ∆(ρ) =
∏
i<j

(xi − xj).

This is called Vandermonde’s Determinant .

To prove the ratio of alternants formula, we need to show that sλ ·∆(ρ) = ∆(λ+ ρ). So we want
to prove

(1)

 ∑
µ∈Zn

≥0

Kλµx
µ

(∑
ω∈Sn

(−1)ωxω(p)

)
=
∑
ω∈Sn

(−1)ωxω(λ+ρ)

Notation

• Sn is the group of permutations of n letters.
• For ω ∈ Sn, (−1)ω is the sign of the permutation.
• Sn acts on Zn by permuting the entries.
• For a partition λ and α = (α1, · · · , αn) ∈ Zn≥0, Kλα is the number of SSYT of shape λ and

content α.
• xα = xα1

1 xα2
2 · · ·xαn

n for α = (α1, · · · , αn)

We want to show that the coefficient of xβ is the same on both sides of (1). Both sides of (1)
are antisymmetric, so if we know that the coefficients are equal when β1 ≥ β2 ≥ · · · ≥ βn then we
can use the antisymmetry to get that the coefficients are equal for all β. We also have, by the anti-
symmetry, that if βi = βi+1 then both coefficients are 0, so we may assume that β1 > β2 > · · · > βn.

Define α by β = α + ρ. The entries of β are strictly decreasing, so α is a partition. Every
monomial appearing in the expansion on both sides of (1) has degree |λ|+ |ρ|. This means we are
interested in when |β| = |λ| + |ρ|, so |α| = |λ|. Matching the coefficients of xα+ρ on both sides of
(1), we get that we need

∑
w∈Sn

(−1)ωKλ,α+ρ−w(ρ) =

{
1 α = λ

0 otherwise

To achieve this end we will use a trick introduced by Eǧecioǧlu and Remmell1. (At least, David
thinks they were the first to use this trick.)

Because Kλγ is a symmetric function of γ, we can change the left hand side of this equation to∑
w∈Sn

(−1)wKλ,w−1(α)+w−1(ρ)−ρ =
∑
v∈Sn

(−1)vKλ,v(α)+v(ρ)−ρ =
∑
v∈Sn

(−1)vKλ,v∗(α).

Here we define

v∗(α) := v(α) + v(ρ)− ρ.

1Eǧecioǧlu and Remmel, A combinatorial interpretation of the inverse Kostka matrix, Linear and Multilinear
Algebra 26 (1990), no. 1-2, 59–84.
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Our goal is now to prove that

(2)
∑
v∈Sn

(−1)vKλ,v∗(α) =

{
1 α = λ

0 otherwise

The advantage of this change of variables is that α 7→ v∗(α) is an action of Sn. Specifically, it is
the standard Sn action translated to fix −ρ instead of 0.

Example We show the effect of this trick for λ = (7, 3, 0), α = (6, 3, 1). The coefficients of s730

are displayed as in the beginning of the notes. The coefficient of xα is marked in red. The terms of
the form α+ ρ−w(ρ) are circled; those of the form v(α) + v(ρ)− ρ are surrounded by squares. In
both cases, we are trying to prove that an alternating sum of the marked numbers is zero, namely,
that 2− 1− 1 = 0. Notice that the circled numbers form a small hexagon near α, because they are
all displacements of α by vectors ρ − w(ρ). On the other hand, notice that the squared numbers
form a hexagon with center slightly offset from the center of the figure; this is because the starred
action is a translate of the standard action. Finally, notice that each square corresponds to a circle
which contains the same number, in a position related to it by the non-starred S3 action.

© ©
1 1 1 1 1© 1 ©

1 2 2 2 2 2© 1©
1 2 3 3 3 3 2 1

1 2 3 3 3 2 1
1 2 3 3 2 1

1 2 3 2 1
1 2 2 1

1 1 1

3. Preview of next class

We will prove (2) next class by using a sign canceling involution. We will always be canceling
tableaux with content γ against tableaux of content s∗i γ where si = si,i+1 ∈ Sn is the permutation
switching i and i+1. Since the starred maps give an Sn action, s∗i v

∗α = (siv)∗α, so we are canceling
terms of the correct forms.

So, let’s understand the action of s∗i . We have

s∗i (γ1, · · · , γ2) = (γ1, γ2, · · · , γi−1, γi+1 − 1, γi + 1, γi+2, · · · , γn)

I like to think of this in the following way: Suppose we have a copies of i, and b copies of i+ 1. Put
one i + 1 aside, switch the other (i + 1)’s to i’s and i’s to (i + 1)’s. For example, (10, 3) becomes
(2, 11).

Example: This is a diagram of the SSYT of λ = (21). The SSYT related by the involution have
arrows between them along with the permutation s∗i,i+1 relating their contents. We will describe
this involution next time.

1 2
2

s∗12

��
1 1
2

2 2
3

1 2
3//

s∗12oo
1 3
2
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s∗23

��

1 1
3

s∗23

��

2 3
3

s∗23

��
1 3
3


